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0 INTRODUCTION

In the 1930’s Hurewicz made the fundamental observation that a path-connected
aspherical space is uniquely determined, up to homotopy equivalence, by its
fundamental group G. Such a space is called a model for BG or Eilenberg-Mac
Lane space K(G,1). The universal cover EG of BG is called the classifying
space for free actions, it is the terminal object in the G-homotopy category
of free G-CW-complexes. One can use invariants of these spaces to study the
groups themselves, for example, calculating the cohomology H*(BG) gives the
group cohomology H*(G). By the 1940’s a purely algebraic definition of group
cohomology was formulated, replacing the space BG with a projective resolution
of Z by ZG-modules.

The geometric dimension of a group G, denoted gd G, is the minimal dimen-
sion of a CW-model for EG. This is a suprisingly subtle invariant, and often
the easiest way to approach it is via the related algebraic invariant of cohomo-
logical dimension. The cohomological dimension of a group G, denoted cd G, is
the minimal length of the projective resolution of Z by projective ZG. It’s easy
to see that gd G = 0 if and only if cd G = 0 if and only if G is the trivial group
and by a theorem of Stallings and Swan, cd G = 1 if and only if gdG = 1 if
and only if G is a free group [Sta68][Swa69]. Eilenberg and Ganea conjectured
that cdG = gd G for all groups and, along with Stallings and Swan’s result
for the dimension one case, proved this conjecture for all cases, except for the
possibility that ¢d G = 2 and gd G = 3 [EG57].

A group G has type F,, if it admits a model for BG with finite n-skeleton,
and on the algebraic side G has type FP,, if Z admits a projective resolution
of ZG-modules, finitely generated up to dimension n. The conditions Fy, FPy
and finitely generated are all equivalent, but the situation is more complex for
larger n. F,, implies FP,,, using the free resolution of ZG-modules arising from
the cellular chain complex of EG. The condition Fj is equivalent to finitely
presented and FP,, with F, implies F,, [Bro94, §VIIIL.7]. Examples constructed
by Bestvina and Brady show there are groups that are FP,, but neither FP,, 4
nor finitely presented for all n [BB97].

For an overview of finiteness conditions see [Bro94, Chapter VIII], [Bie&1]
and [Geo08| Chapter II].

Spaces which admit free G-actions can be very difficult to find, not many
occur in nature and they are often large and unwieldy. If G is a non-trivial
finite group, for instance, a model for EG is necessarily infinite dimensional.
We weaken the freeness condition, looking instead for C'W-spaces which admit
proper actions (where the cell stabilisers are finite subgroups of G). In analogy
with the definition of a model for EG, a model for E,G if it is a terminal object
in the G-homotopy category of proper G-CW complexes.

There are many constructions of models for Eg,G for different classes of
groups, generic constructions which work for all classes of groups [Mil56] [Seg68]
and constructions, often smaller and easier to work with, for specific classes of
groups, such as the Rips complex of a hyperbolic group [MS02|[Liic03]. This
idea can be further generalised to the study of models for ExG, terminal objects
in the homotopy category of G-CW complexes with stabilisers in some family
F of subgroups of G.

Models for Eg,G and models for Eq, G, where VCyc denotes the family of



0.1 Geometric and Cohomological Dimension

virtually cyclic subgroups, have recently become of great interest because they
appear on one side of the Baum-Connes and Farrell-Jones conjectures respec-
tively [LRO5]. These are deep conjectures which have far reaching consequences
in mathematics [MV03][BLROS].

0.1 GEOMETRIC AND COHOMOLOGICAL DIMENSION

We define the Bredon geometric dimension of a group G, denoted gd;, G, to be
the minimal dimension of a model for E,G. As in the case of ordinary geomet-
ric dimension this invariant is fairly intractable, so many algebraic invariants
have been proposed to mimic this property. The most successful is the Bredon
cohomological dimension Og, cd G. Indeed, it is easy to show that O, cd G <
gd;, G and Liick and Meintrup provide that gd;, G < max{Og;, cd G, 3} [LMOO,
Theorem 0.1]. Furthermore, Dunwoody has shown that Og,cd G = 1 implies
that gd,, G =1 [Dun79]. This leaves open only the possibility of an Eilenberg-
Ganea phenomenon, a group for which Og, cdG = 2 and gd, G = 3. Brady,
Leary and Nucinkis show that this can indeed happen [BLNOI].

The Bredon cohomological dimension is, unfortunately, also difficult to com-
pute in practice so there has been a lot of attention given to more easily com-
putable invariants. Perhaps the most obvious invariant when G is torsion-free
is the virtual cohomological dimension. If G has finite virtual cohomological
dimension, say ved G < n, then by a theorem of Serre [Ser71][Bro94, VIII.3],
G has finite geometric dimension. Except in the trivial case however, Serre’s
theorem does not provide that ved G = Og, cd G or even a good bound. The
conjecture that ved G = Oy, ¢d G is known as Brown’s conjecture [Bro79], and
is false in general, although there are classes of groups for which it is known to
hold [MPNI10].

In [Kro93|, Kropholler introduces a hierarchically defined class of groups
HF. Let HyF be the class of groups acting properly on a contractible space
with finite stabilisers, and then let HF to be the smallest class containing H; F
and with the property that if G acts on a contractible complex with stabilisers
in HF then G is in HF. Kropholler and Mislin show that if G is a member of
HF and is FPo, then G has finite Bredon geometric dimension [KMO98]. This
class HF is very large, being closed under countable direct limits, free products
with amalgamation and HNN extension, but it does not contain all groups.
Thompsons group F' is FP., yet has infinite cohomological dimension over Q,
since it contains an infinitely generated free abelian subgroup [BG84|[CFP96],
thus Kropholler’ s argument cannot be weakened to require only FP.,. It’s
quite difficult to produce examples of groups which do not belong to HF, for a
long time the only known examples contained Thompsons groups as subgroups,
more recently more examples have been constructed [ABJT09|[GanT2].

Kropholler’s Theorem relies heavily on the fact that these HF groups of
type FP., have bounded lengths of finite subgroups, and in fact almost all
known results bounding the geometric dimension rely on bounded lengths of
finite subgroups. Almost nothing is known in the unbounded case, but it is
clear that such a bound is not required [Liic00, Example 1.11]. Recall that the
length of a finite subgroup F is defined to be the length of the longest chain of
subgroups of F:

ISR <SP =F
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Liick’s result [Lic00, Theorem 1.10], can be viewed as an improvement of
Krophollers result, he introduces a new invariant B(d), which is satified by
G if and only if pd;; U < d for any ZG-module U which is projective when
restricted to any finite subgroup of G, and proves that the geometric dimension
is bounded by max(3,d) + I(d + 1), where [ is the the bound on the lengths of
finite subgroups of G. Martinez-Perez obtains a cohomological analog of Liick’s
result in [MPQ7], showing that if G is known to have finite Bredon cohomological
dimension, it is bounded above by I+ pd; B(G,Z), where [ is the bound on the
lengths of the finite subgroups and B(G,Z) is the ring of bounded functions.
Note that if G has B(d) then pdy- B(G,Z) < d.

By a Theorem of Bouc [Bou99] and Kropholler-Wall [KW11], if G acts prop-
erly on a contractible G-CW-complex X, the cellular chain complex C. X splits
when regarded as a complex of ZH-modules for any finite subgroup H of G.
Nucinkis introduced a cohomology theory called F-cohomology to mimic this
property in [Nuc99]. F-cohomology can be thought of as a generalisation of
cohomology relative to a single subgroup, instead taking cohomology relative
to a family of subgroups F. It’s also a special case of the relative cohomology
defined in [ML95L IX]. This theory gives rise to a new algebraic invariant, the
Fin-cohomological dimension, denoted Fincd G. It is an open question whether
Fincd G < oo implies gd g, G < oo, or indeed if Fincd G < oo implies G € Hy F.

Mackey Functors for finite groups have been well-studied, as they provide
an abstract framework with properties common to structures such as group co-
homology, the representation ring, topological and algebraic K-theory [Web00],
there are also some applications of Mackey functors for infinite groups|Liic02].
In [MPNO6], Martinez-Perez and Nucinkis study Mackey functors for infinite
groups, constructing a cohomology theory from this in a similar way to the con-
struction of Bredon cohomology. This creates a new invariant, the Mackey co-
homological dimension, denoted M ;, cd G. This is a lower bound for O, ¢cd G,
but they prove that for all virtually torsion-free groups there is equality:

vedG = Fined G = My, cdG

This is further improved by Degrijse [Degl3b], who shows that for groups G
with a bound on the orders of their finite subgroups,

Fincd G = Mgy cd G

In the process of proving this result, Degrijse studies a specific family of Mackey
functors known as cohomological Mackey functors. Considering these gives rise
to a new finiteness condition - the cohomological Mackey dimension - denoted
Hr cdG. Degrijse shows that Fincd G = Hx cd G for all groups G with Hr G <
oo. Note that in [Degl3b], the notation cdeomack G is used instead of Hxcd,
the reason for the symbol H will be explained in Section [4]

For all the algebraic invariants so far mentioned there is the following chain
of inequalities [BLNOI Theorem 2][MPNO06, 3.9,4.3][Deg13b]:

cdg G < FincdG =HrcdG < My, cdG < Ogy cd G

It’s unknown if the finiteness of any of these invariants, except the Bredon
cohomological dimension, implies the Bredon cohomological dimension is finite.
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In [LNO3], Leary and Nucinkis use finite extensions of Bestvina-Brady groups
to construct virtually torsion-free groups for which Oy, cd G = 3n and ved G =
Fincd G = 2n for all integers n.

In Section [1| we construct modules over a category in generality, Section
then specialises to the orbit category Oz, where we discuss the Bredon coho-
mological dimension Oz cd. We also consider a condition related to Of cd, the
covariant cohomological dimension, and completely classify those groups with
covariant cohomological dimension n (see Section . Section contains
examples of groups where various notions of dimension differ.

There are no new results in Section [3| on the Mackey cohomological di-
mension, although for completeness we do provide a brief overview of known
results. In Section [£:4] we show the cohomological Mackey cohomological di-
mension Hg, cd and the F cohomological dimension for the family of finite
subgroups Fincd always agree, a very slight improvement of [DegI3bl 6.2.16].

0.2 FP,, CONDITIONS

Related to the geometric dimensions are the generalisations of the FP,, condi-
tions from ordinary group cohomology. These generalise to the OxFP,, condi-
tions in Bredon cohomology, the M zFP,, conditions for Mackey functors, the
‘Hr FP,, conditions for cohomological Mackey functors, and the F-FP,, condi-
tions arising from JF-cohomology.

Of these the OxFP,, conditions are the most studied, and in fact completely
classified in the case F = Fin: G is O, FP, if and only if G has finitely many
conjugacy classes of finite subgroups and WK = NgK/K is FP,, for all finite
subgroups K of G [KMPN10, Lemmas 3.1, 3.2]. A version of the Bieri-Eckmann
criterion for OxFP,, is also proved in [MPNTII] Section 5] (see [Bie81] Section
1.3] for the classical case).

The condition Fin FP,,, coming from F-cohomology, is much less understood,
in [LN10] it is shown that G is FinFPq if and only if G has finitely many
conjugacy classes of groups with prime power order and conjectured that a
group is Fin FP, if and only if it is FP, and Fin FPy.

As far as we are aware, nothing is known about the conditions Mg, FP,, or
‘Hgin FP,.

In Section 2.5 we provide a partial classification of a new condition related to
Oz FP,, called covariant O FP,, and in Section|3.5|we make some observations
about the conditions Mg, FP,,, completely describing the condition Mg, FPy.
In Section we prove that Hg, FP,, implies Fin FP,,.

0.3 BREDON DuaLITY GROUPS

A duality group is a group G of type FP for which

i o | Zflat ifi=n
H'(G,2G) = { 0 else.

Where n is necessarily the cohomological dimension of G. The name duality
comes from the fact that this condition is equivalent to existence of a ZG module
D, giving an isomorphism

HY(G,M) = H,_;(G,D @z M) (%)

_4-
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for all ¢ and all ZG-modules M. It can be proven that given such an isomor-
phism, the module D is necessarily H"(G,ZG). Such groups were first consid-
ered by Bieri and Eckmann [BET3], see also [Bro94, VII.10][Dav00][Bie81] III]
for an introduction to these groups. A duality group G is called a Poincaré
duality group if in addition

Z ifi=n
0 else.

HY(G,ZG) = {

These groups are so called because having a manifold model for BG implies G
is a Poincaré duality group. Wall posed the question of whether the converse is
true [Wal79] - the answer is no as Poincaré duality groups can be built which
are not finitely presented [Dav98, Theorem C] - but the question remains a
significant open problem if we ask include the requirement that G be finitely
presented.

These notions can be generalised to duality groups over R, where R is some
commutative ring, so that G is duality over R if G is FP over R and

i . | Rflat ifi=n
H'(G, RG) = { 0 else.
and G is Poincaré duality over R if
H'(G, RG) = { 0 else.

The correct analog of Wall’s conjecture is whether every torsion-free finitely
presented Poincaré duality group over R the fundamental group of an aspherical
closed R-homology manifold [Dav00, Question 3.5]. This is answered by Fowler,
who describes a Poincaré duality group over Q which is not the fundamental
group of an aspherical closed Q-homology manifold [Fowl2]. There are also
various sufficient conditions for the conjecture to be true, see the discussion in
[Dav00].

Duality groups behave very well under various group theoretic constructions.
In particular they are preserved under extension and certain free products with
amalgamation [Bie81] III].

If G is a group which admits a cocompact manifold model M for E,G, such
that for any finite subgroup H, M is a submanifold, we have the following
condition on the cohomology of the Weyl groups WH [Bro94, VIII.8.2]

Z ifi=dimMH

H'(WH,Z|WH]) = { 0 else.

Building on this, in [DLO3][MPI13l Definition 5.1] a Bredon duality group is
defined as an O, FP group G such that for every finite subgroup H of G there
is an integer ny such that

R-flat ifi=ng

H'(WH,RWH]) = { 0 else.

Furthermore, G is said to be Bredon-Poincaré-duality over R if for all finite H,

H™ (WH,RIWH]) = R

_5-



0.3 Bredon Duality Groups

Note that for torsion-free groups this reduces to the usual definition of duality
and Poincaré-duality groups. Interestingly, there appears to be no analog of the
duality described by (*) between homology and cohomology groups seen in the
case of ordinary duality.

In Section[5] we give various examples of duality groups, classify some duality
groups of low dimension and discuss under what conditions the property of being
Bredon duality is preserved by extensions and amalgamated free products.



1 MODULES OVER A CATEGORY

Much of this section is based on [Liic89]. Although we consider a slightly more
general situation, as explained in Remark the idea is the same.

Let R be a commutative ring with unit and € a small Ab category (some-
times called a preadditive category) with the condition below.

(A) For any two objects x and y in €, the set of morphisms, denoted [z, y]e,
between x and y is a free Abelian group.

Recall that an Ab category is one where the morphisms between any two objects
form an abelian group and where morphism composition distributes over this
addition: For w,z,y, z € € and morphisms

9 h
wgmjy%z
g/

there is a distributive law

hg+9')f =hgf+hg'f

To make € an additive category we would require a zero object and binary
biproducts, in general though the categories we want to work with won’t have
this extra structure. The interested reader should consult [Wei94, A.4] for a
discussion of these conditions.

Remark 1.1. In [Liic89, 9.2], categories X are considered with the property
that every endomorphism in X is an isomorphism, then in constructions where
we would use the set [z, y]e, Liick instead uses the free abelian group with basis
the morphisms between z and y in X (see for example, [Liic89] 9.8]). Thus the
correct analog of Liick’s property with our definitions is the following:

(EI) For every z € €, the basis elements of [z, z]¢ are isomorphisms.

The main advantage of the (EI) property is that it allows objects in € to
be given a partial order: setting x < y if [z,y]e is non-empty. We choose not
to ask for this property in this section, since we want everything discussed here
to be relevant to the Mackey category, discussed in Section [3] which does not
have (EI). The main example of a category with (EI) is the Orbit category, see
Example and more generally Section

For examples of categories which have (A) but don’t have (EI), see Sections
[Bland [ where the Mackey and Hecke categories are considered, neither of which
have (EI).

Throughout, the letters €, ®, € etc. will always denote small Ab categories
with (A).

Define the category of covariant €-modules over R to be the category of
R-additive covariant functors € — R-Mod, the category of left R-modules.
Similarly the category of contravariant €-modules over R is the category of
R-additive contravariant functors € — R-Mod.

Remark 1.2. If neither “covariant” or “contravariant” is specified in a state-
ment about €-modules, the statement holds for both covariant and contravariant
modules.



Immediately from the definition we have two important facts. Firstly, be-
cause €-modules form a functor category and R-Mod is an Abelian category,
the category of €-modules is an Abelian category [Mur06| 44]. In fact, it inher-
its all of Grothendieck’s axioms for an Abelian category which are satisfied by
R-Mod [Mur06l 44,55], namely:

1. AB3 and AB4 - Every small colimit exists and products of exact sequences
are exact.

2. AB3* and AB4* - Every small limit exists and coproducts of exact se-
quences are exact.

3. ABS5 Filtered colimits of exact sequences are exact.

See [Wei94] for a discussion of these axioms. Secondly, again because we are
working in a functor category:

Remark 1.3. A sequence of €-modules
0— A(-) — B(-) —C(-) —0

is exact if and only if it is exact when evaluated at every x € €. Note that 0
denotes the zero functor, sending every object to the zero module. Similarly,
using the fact that the category of €-modules is a functor category and the cat-
egory of Abelian groups is complete, limits and colimits are computed pointwise
[Mur06l p.8].

Since [z, y]e is Abelian for all z and y in €, for any y € € we can form a
contravariant module R[—, yle¢ by

R[_a y]g(l’) =R Rz [l‘, y]@
The analogous construction for covariant modules gives us a module R[y, —|¢
R[y7 7]@(1’) =R 7z [y7 I]Q:

Later on in Section [1.2] we will show that these modules are the correct analog
of free modules in the category of €-modules. Since Rz, y]¢ is a free R-module
we will usually write ra instead of r ® a, for r € R and « € [z, y]e.

Remark 1.4. If f € R[z,y|¢, where f = ) . rif; for some f; € [z,y]e, and
Q(—) is a €-module, then we will write Q(f) for the sum:

Qf) = Zricxfi)

Notice we now have the equality M (rf) = rM(f) for f € R[z,y]e and r € R.



Lemma 1.5 The Yoneda-type Lemma
For any covariant functor A(—) and = € €, there is an isomorphism, natural

in A(—):

Morg (R[z, —¢, A(-)) = A(z)
[ fa)(ide)

Similarly for any contravariant functor M (—) and = € €, there is an isomor-
phism, natural in M (—):

Il

Morg (R[—, z]e, M(—)) = M(x)
f= f(z)(idy)

The proof is a direct translation of the standard proof for the orbit category
into the setting of €-modules, see for example [MV03] p.9].

Proof. We provide a proof only for covariant modules, that for contravariant
modules is similar.

Let f be a morphism f : R[z,—]e¢ — A(—), f is completely determined by
f(z): If @ € R[z,y]e then we can view « as

o= Zriai = ZTZ‘R[J?, a;](idz)

Where «;[z,y]e and 7; € R. Thus

f)(a) = fy) <Z riR[z, ad(idx)>
= Z rif(y) o Rlz, o](id)
= Z riA(a;) o f(2)(id,)
= Az(Oz) o f(z)(ids)
Where the second equality is because f is R-additive, and the isomorphism

is because f is a morphism in the category of €-modules - so a natural trans-
formation of functors - meaning the diagram below commutes.

/(@)

Rz, z]e —— A(x)

R[I,a]g‘l \LA((!)
fy)
Rz, yle = A(y)

Conversely, given an element a € A(x) we can define a morphism f, with

f(x)(ldw) = a, by

for any « € [z, yle. O



The endomorphisms [z, z]¢ of an object z € € form an associative ring. This
ring will appear often, so much so that we write End(z) instead of [z, z]¢, and
write R End(z) for R®zEnd(z). We can also consider the ring of automorphisms
of an object x in €, denoted Aut(z) and the group ring R Aut(x). The (EI)
property of Remark[L.1]can now be restated as “End(z) = Aut(z) for all z € €”.

Remark 1.6. Given a covariant module A(—), evaluating A(—) at = gives a
left R End(z)-module, using the action below (recall the notation described in

Remark :
REnd(z) x A(z) — A(x)
(f,a) — A(f)(a)

This is a left-module structure since given two elements g, f € REnd(z),
(gof)-z=A(go f)(z) = Alg) 0 A(f)(x) =g (f - x)

Similarly, for a contravariant module M (—), M(z) has a right REnd(z)-
module structure.

Remark 1.7. End(z) could be viewed as a category with one object, and with

——

morphisms the free Abelian group End(z), denote this category End(z) to dis-
tinguish it from End(z). Clearly End(z) has property (A). It’s now possible to
pass freely between covariant End(x)-module and left R End(x)-modules, simi-

larly between contravariant E@)—modules and right R End(x)-modules. Ex-
actly the same statement holds replacing endomorphisms with automorphisms.

There is often a need to consider bi-modules. A €-® bi-module (can be
covariant or contravariant in either variable, although most of the bi-modules
we shall use will be covariant in one variable in contravariant in the other), is
simply a functor

Q(—,7): €x® - R-Mod

Example 1.8. Perhaps the most common bi-module we’ll come across is the
¢-¢ bi-module R[—, ?]¢, contravariant in the first variable and covariant in the
second.

R[_’ 7]€ : (xvy) = R[m,yk

Using Remark and Example Rlz,?)¢ is a left REnd(x) module,
and R[—,x]¢ is a right REnd(z)-module. Thus we can consider Rz, ?]¢ as an
REnd(z)e-€ bi-module, and R[—, z]¢ as a €-REnd(z) bi-module.

Remark 1.9. When considering, for example, the morphisms between two €-
¢ bi-modules Q(—,?) and P(f,77), it can be unclear with respect to which
variables we are working with - to solve this from now on we’ll use the notation

More (Q(+,7), P(£,77))

to indicate that the morphisms are considered with respect to the first variable
in each bi-module. For example, in this new notation, the natural isomorphism
of the Yoneda-type Lemma [I.5] becomes

More (R[#, )¢, M(+)) = M (x)

-10-



1.1  Tensor Products

Example 1.10. The Orbit Category Or.

The Orbit Category O is the prototypical example of a category with prop-
erty (A), and will be studied properly in Section |2} It was introduced for finite
groups by Bredon [Bre67], who used the associated cohomology theory, Bredon
cohomology, to develop equivariant obstruction theories. It was later generalised
to arbitrary groups by Liick [Liic89].

Fix a family F of subgroups of G, closed under subgroups and conjugation.
Commonly studied families are those of all finite subgroups, and of all virtually
cyclic subgroups. The objects of the orbit category Ox are all transitive G-sets
with stabilisers in F, ie. the G-sets G/H where H is a subgroup in F. The
morphism set [G/H,G/K]o, is the free abelian group on the set of G-maps
G/H — G/K. A G-map

a:G/H— G/K
H+— gK

is completely determined by the element a(H) = gK, and such an element
gK € G/K determines a G-map if and only if HgK = gK, usually written as
gK € (G/K)H. Equivalently gK determines a G-map if and only if g "' Hg < K.
Notice that the isomorphism classes of elements in Oz, denoted Iso O, are
exactly the conjugacy classes of subgroups in F. The orbit category can be
thought of as encoding the finite subgroup structure of G.

The orbit category as described above is often written Z O instead of simply
Ox. Some authors use Or to denote the category with the same objects and
whose morphism set is all G-maps (without taking the free abelian group on
them) and use Z Oz to denote the category we have described. We've chosen
this notation so it matches that used for the Mackey and Hecke categories used
later.

1.1 TENSOR PRODUCTS

This section describes various tensor products of €-modules, they can be thought
of as generalisations of the tensor product over group rings. Given a group ring
RG, for R a commutative ring, a left RG-module A and a right RG-module
M the tensor product over RG is the R-module M ®grg A. The analog for
a contravariant €-module M (—) and covariant €-module A(—) will be an R-
module M (+) ®e¢ A(+£), called the tensor product over €. This is described in
Section [[L1.1]

Given two left RG-modules M and N, the tensor product M ®gz N can
be given the diagonal action of RG, the €-module analog of this is the tensor
product over R. This is the €-module denoted A(—) ® g B(—), where A(—) and
B(—) are either both contravariant or both covariant modules, and is described

in Section [[LT.2

1.1.1 TENSOR PRODUCT OVER €

We describe a construction, due to Liick [Lic89, 9.12], of the categorical tensor
product of [Sch70, 16.7][Fis68] for the categories of €-modules over R.

The categorical tensor product is the R-module M(+) ®¢ A(+) such that
M(+) ®¢ 1 is left adjoint to More (M (+£),T). This definition is valid in functor
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1.1  Tensor Products

categories under some technical conditions which can be found in the introduc-
tion of [Fis68], but in order to keep this readable will be omitted here.

The notation of crossing out of variables is used for the tensor product as
with More, see Remark So for M(—) contravariant and A(—) covariant,
the tensor product over € of M(—) and A(—) is written

t@e t: M(=) x A(=) = M(#) ®c A(F)

There is an adjoint isomorphism, see Proposition [1.13] reminiscent of the
adjoint isomorphism for left and right modules over a ring.

Morg (M (7) @¢ Q(7, ), N(#)) = Moro (M(7), More (Q(Z, #), N(#)))

“_»

Here Q(?,—) is an ©-€-bi-module - a contravariant ®-module in and a

covariant €-module in “7”.
The construction of the tensor product is as follows:

M(+4) @¢ A(+ EBM ) ®r A( )/~

zeld

Where o*(m) ® a ~ m ® ax(a) for all morphisms a € [z,y] in €, elements
m € M(y) and n € A(x), and objects x,y € €. The only change passing from Z
to an arbitrary ring R is that the tensor product in the construction is taken over
R instead of Z. Since R is commutative, this construction yields an R-module.

Example 1.11. If A is a left REnd(z)-module and M is a right REnd(z)-
module then, by Remark A and M can be regarded as covariant and con-

travariant End(z)-modules A(—) and M (—). It’s easy to check that
M(#) Oty AA) 2 M @) A

Lemma 1.12 [MV03| p.14] There are natural isomorphisms for any contravari-
ant module M (—) and covariant module A(—):

M(#) @¢ Rlz, #]e = M(z)

R[4, z]e ®¢ A(+) = A(x)

Proposition 1.13 [Liic89, p.166][MP02] There are adjoint natural isomor-
phisms:

Morg (M(?) ®@e Q(7, 4), N(+)) = More(M (%), More (Q(Z, £), N(+)))
More(Q(7, ) @ A(#), B()) = Morg (A(4), More(Q(7, #), B(7)))

Here M(—) and N(—) are contravariant modules, A(—) and B(—) are covariant
modules, and Q(?, —) is an ®-€-bi-module - a contravariant D-module in “—”
and a covariant ¢-module in “?”.
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1.1  Tensor Products

Corollary 1.14 There are a natural isomorphisms:
Morg (M ®g End(z) B[, #]o, N(#)) = Hompg gna(z) (M, N(z))

MOI‘@ (R[%» 1’]@ Or End(x) A’ B(%)) = HOIIlR End(x)(Aa B(x))

Where M(—) and N(—) are arbitrary contravariant modules, and A(—) and
B(—) arbitrary covariant modules.

Proof. Specialise Proposition to the case € = Efd@) and Q(7,—) =
Rz, —], recalling from Remark [1.6| that an R End(x)-module is equivalently an

End(z)-module, where End(z) is End(z) viewed as a category with a single
element. Thus

Morg (M ®REnd(m) R[$7 7L]337 N(%))
o~ HomREnd(Z) (M, Mor@ (R[«/x, %]@7 N(%)))
= HomREnd(w) (M7 N(‘T))

Where the second natural isomorphism is the Yoneda-type Lemma [1.5 The
other natural isomorphism is proved analogously. O

Lemma 1.15 [MP02, Lemma 3.1] For any contravariant ®-module M (—), ©-
€ bi-module Q(—,?) (covariant in “-” and contravariant in “?”) and covariant
module A(?), there is a natural isomorphism:

(M(#) @0 Q(#,7)) ®@c A7) = M(+) @0 (Q(+,7) ®e A(?))

| Lemma 1.16 The tensor product over € commutes with arbitrary direct sums.

Proof. This is clear from the construction. ]

Remark 1.17. Occasionally we will be in a situation like the above, except
that Q(—.7) is a REnd(x)-€ bi-module or similar. For example, @ = R[z, ?]¢.
In this case the associativity of the Lemma above becomes, for a covariant €-
module A(—), REnd(z)-€ bi-module Q(—) (contravariant in “-”), and right
REnd(z)-module N:

(N ®End(x) Q(%)) Q¢ A(7L) =N ®End(a:) (M(%) B¢ A(%))

Similarly for a contravariant €-module M(—), REnd(z)-€ bi-module Q(-) (co-
variant “-”), and left R End(z)-module A:

M(+#) ®¢ (Q(+) @Ena(z) A) = (M(4) ®¢ Q(#)) @End(z) A

1.1.2 TENSOR PRODUCT OVER R

We describe the tensor product over R as in [Liic89, 9.13]. If A(—) and B(—) are
¢-modules, either both covariant or both contravariant, then the tensor product
over R is written

T®rT:A(=) x B(—) = A(—) ®@r B(—)
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1.2 Frees, Projectives, Injectives and Flats

Where
A(=) xgp B(—) : x — A(z) ®r B(z)

and if « : * — y is a morphism in €, then

A(—)®r B(-) : a+— A(a) ®g B(a)

1.2 FREES, PROJECTIVES, INJECTIVES AND FLATS

Free objects in some category are usually defined as left adjoint to some functor,
often with codomain Set. For modules over a category € the necessary forgetful
functor is

U : { €-modules } — [Ob(C), Set]
UA:z— A(z)
Here [Ob(€), Set] denotes the category of functors Ob(€) — Set, where Ob(&)
is the category whose objects are the objects of € but with only the identity

morphisms at each object. The functor F' left adjoint to U is fairly easy to
describe: If X € [Ob(€), Set] then

FX =P P Rlz, e

€€ X (x)

Analagously if we are working with contravariant functors,

FX =P & Rl- ale

el X (z)

That (F,U) form an adjoint pair is a consequence of the Yoneda-type Lemma
For any covariant module A(—):

More(FX (), A(-)) = More | D € Rz (-)

€€ X (x)

= H H More (R [z, s, A(—))

z€C X (z)

HHA(E

z€C X (x)
= Homop(e),set] (X, UA)

I

The proof for contravariant functors is analogous.

Projective and injective modules are defined as in any Abelian category, see
for instance [Wei94l, §2.2]. Free modules are projective: If

0— A(-) — B(-) —C(-) —0

is an exact sequence of €-modules then, by the Yoneda-type Lemma (1.5)), ap-
plying More (R[x, 7]e, —) gives the exact sequence

0— A(z) — B(z) — C(z) — 0
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1.8 Restriction, Induction and Coinduction

Since direct sums of projectives are projective in any Abelian category, this is
enough to show the category of €-modules has enough projectives, in fact the
counit of the adjunction between F' and U

n: (FUA)(=) — A(-)

is always an epimorphism: By construction,

FUA(_):@ @ Fa<x7_>

z€C acA(x)

where F,(x,—) 2 R[z, —]¢. The counit is the map defined on F,(z,—), via the
Yoneda-type Lemma by id, — a. It’s clear that every a € A(x) is in the
image of n(z), and thus 7 is an epimorphism.

The category of €-module also has enough injectives, see Remark for a
proof using Coinduction.

A covariant (respectively contravariant) €-module F'(—) is flat if the functor
T ®e F(+) (repsectively F(+) ®¢ 1) is flat. Lemma [I.12] shows free modules are
flat, and since the tensor product commutes with direct sums (Lemma ,
projectives are flat also.

1.3 RESTRICTION, INDUCTION AND COINDUCTION

In [Lic89, §9.8] Liick defines functors called “extension” and “restriction” for
any element z € €, taking an R End(z)-module to a €-module and vice versa.
We define three functors, called restriction, induction and coinduction. Given a
functor ¢ : € — D, restriction takes ®-modules to €-modules and induction and

—

coinduction take €-modules to D-modules. In the case that ¢ : End(z) «— €
is the obvious full functor, the induction and restriction functors agree with
Liick’s extension and restriction functors. Our naming of these functors follows
[MPNO6], where induction, restriction and coinduction are defined in this way
using functors ¢. In almost all cases we consider ¢ will be a full functor “in-
cluding” one category in another. Perhaps the main feature of these functors is
that induction is left adjoint to restriction and coinduction is right adjoint to
restriction.

Remark 1.18. In [Liic89, §9.8], Liick also defines an adjoint pair of functors
called “splitting” and “inclusion”. We don’t define these here as the adjointness
of these functors relies on the (EI) property which we are not assuming holds
in our category €, see Remark

Restriction, induction, and coinduction are, for covariant functors:
Res, : {Covariant ®-modules} — {Covariant €-modules}

Res, : A(—) — Aou(—)

Ind, : {Covariant €-modules} — {Covariant D-modules}
Ind, : A(=) — R[(?), —]o ®@c A(})
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1.8 Restriction, Induction and Coinduction

Where the notation R[t(?),—]p means that in the variable “?”, this functor
should be regarded as a €-module using ¢. Finally, coinduction:

Colnd, : {Covariant ¢-modules} — {Covariant ®-modules}
Colnd, : A(=) — More(R[—, (!)]o, A(?))

For contravariant functors, the definition of restriction is identical, and for
induction and coinduction is nearly identical:

Ind, : {Contravariant €-modules} — {Contravariant ©-modules}
Ind, : M(=) — M(?) ®¢ R[—,(})]o

Colnd, : {Contravariant €-modules} — {Contravariant D-modules}
Colnd, : M(—) — More(R[c(?), —]o, M (7))

Usually the functor ¢ will be implicit, and we will use the notation Resg
for Res,, and Slmllarly for induction and coinduction. We will also write Res®

instead of ResE/d(\) and similarly for induction and coinduction.

A basic but very useful fact about induction and coinduction is that for any
left R End(z)-module A,

Ind¢ A(z) = Rz, ] @REnd(z) A=A

CoInd$ A(z) = Homp End(z)(R[z, 2], A) = A

and similarly for right R End(z)-modules and contravariant induction and coin-
duction.

Another useful observation, and an immediate consequence of Lemma [1.12
is that induction takes frees to frees:

Indg R[t, —]e = R[u(7), —]» ®e R[t, /e = R[f, ~]o

and similarly for contravariant modules. We’ll generalise this fact later in Propo-
sition [1.20] showing that induction preserves projectives.

Using Proposition and Lemma gives a chain of natural isomorphisms
(shown here for covariant modules):

Mors (Tndg A(-), B(#)) = Mors (R[(?), #]o ©e A(?), B(-))
= Morg (A 7)7M0 ( [ (7))%}¢7B(7L)))
=~ More (A(7), Bo (7))
=~ More ( (7)7Res (7))

[¢]

)

Thus induction is left adjoint to restriction. Using Lemma [T.12] restriction can
be reformulated as follows

Resg A(—) = R[Z,1(—)]o ®o A(?)
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1.8 Restriction, Induction and Coinduction

Now, using Proposition [1.13| again gives the adjointness of coinduction and
restriction. Here is the proof for covariant modules, that for contravariant is
almost exactly the same.

=

More (Resg A(4), B(%)) = More (B[, u(#)]o ®2 A7), B(+))
= Morg (A(?), More (R[Z, ()]0, B(+)))
> Moro (A(?), Colnd? B(?))

We’ve shown:

Proposition 1.19 Induction is left adjoint to restriction and coinduction is
right adjoint to restriction.

The following proposition is almost entirely a consequence of this adjointness.

Proposition 1.20 1. Restriction is exact.

2. Induction is right exact and preserves projectives, flats and “finitely gen-
erated”.

3. Coinduction preserves injectives.

4. Induction and restriction preserve colimits and coinduction and restriction
preserve limits.

Proof. 1. Since a short exact sequence of modules over € is exact if and only
if it’s exact when evaluated at every element of €, restriction is always
exact.

2. Since induction has an exact right adjoint it preserves projectives [Wei94,
2.3.10] and is right-exact [Wei94l 2.6.1].

That induction takes flats to flats is a direct consequence of Lemma [1.21
below. In the covariant case, this implies the functor ? ®o Indg F(£) is
naturally isomorphic to the functor (Resg?) ®¢ F(#). Thus if F(—) is
assumed flat then ? ®g Indy F(—) is exact. An analogous proof holds for
contravariant F'(—).

If A(-) is a finitely generated @€-module then there is an epimorphism
F(—) —» A(—) for some finitely generated free F'(—). Induction is right
exact so there is an epimorphism

Ind§ F(—) —» Ind? A(—-)

Induction takes frees to frees so Indy A(—) is finitely generated.

3. Since coinduction has an exact left adjoint it preserves injectives [Wei94,
2.3.10] and is left-exact [Wei94l 2.6.1]

4. This is another consequence of adjointness [ML9IS8| p.118].
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1.4 Tor and Ext

Lemma 1.21 There are natural isomorphisms for any contravariant €-module
M (—) and covariant €-module A(—).

M(#) ®p Indg A(#) = Res¢ M(#) @e A(£)

Ind2 M(+4) ®p A(£) = M(+) ®c ResD A(+)

Proof. We prove first natural isomorphism, the second is analogous.

M(#) ®9 Indg A(4) = M(+) @0 (R[Z, 4o ®c A(?))
(M(4) ®» R[Z, #]o) ®c A(F)
=~ Resg M(+#) ®e¢ A(+)

1%

Where the second natural isomorphism is Lemma [1.15 O

Remark 1.22. In Section|l.2] it was shown that the category of €-modules has
enough projectives, a consequence of Proposition M(Z&) is that the category of
¢-modules has enough injectives as well. For any ring S and module M over S
there always exists an injective module I and injection M —— I [Wei94l, 2.3.11].
Given a €-module M (—) choose injective R End(z)-modules I, such that M (z)
injects into I, for all x € €, and consider the map

H N M(_) — H COIndIﬁ{End(I) II(_)
red zel

Where 7, is chosen, via the adjointness of coinduction and restriction, such that
1. () is the inclusion of M(z) into CoInd$ I,.(z) = I,. Clearly the product of
the 1, maps is an injection. The module on the right is injective by Proposition
3) and the fact that in any Abelian category, products of injective modules
are injective.

Example 1.23. If A(—) and B(?) are covariant €-modules, we define a ¢€-€
bi-module:

A7) @r B(=) : (2,y) = Az) @ A(y)

Denote by A : € — € x € the diagonal functor A : x — (x,2). The tensor
product over R, as defined in Section could be defined as

A(—) ®r B(=) = Resa(A®g B)(-)

1.4 ToRr AND EXT

Since the categories of €-modules are Abelian and have enough projectives, we
can do homological algebra with them. If A(—) is a covariant €-module and
P,(—) a projective resolution of A(—) then for any covariant module B(—) and
contravariant module M (—), we define Exty and Tor? as one would expect.

Exte(A(£), B(#)) = H" More (P.(#), B(#))
Tory (M(4), A(#)) = Hi(M(+) ©e P(4))
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1.4 Tor and Ext

We make the same definitions for contravariant modules: If M(—) is a con-
travariant module, Q.(—) a projective resolution of M(—), A(—) a covariant
module and N(—) a contravariant module.

Exte (M (), N(#)) = H* More (Q.(+), N(#))
Tory (M (), A(#)) = H(Q«(#) ®e A(#))

A priori Tor® has just been given two definitions, fortunately there is Propo-
sition below, an analog of the classical result that Tor of modules over a
ring can be computed using a resolution in either variable.

Remark 1.24. The reason the ring R is not mentioned in the notation for
Torf and Exty is that they are essentially independent under change of rings,

as explained in Proposition if the ring does need to be emphasised the
notation used is Tor>® and Extg g, this will be very rare however.

Proposition 1.25 If A(—) is any covariant module and M (—) is any contravari-
ant module, P,.(—) is a projective covariant resolution of A(—) and Q.(—) is a
projective contravariant resolution of M (—) then for all k,

Hy (M (#) ®@¢ Pu(4)) = Hi(Qu(4) ®c A(#))

Showing the two definitons of Tor® given are equivalent.

We need some notation for the proof: If (Cy(—),0) is an arbitrary chain
complex of € modules then we write C,1;(—) for the chain complex whose
degree i term is Cj4;(—), and differential (—1)79 (this is denoted by C[j].(—)
in [Wei94]). Note that this change in the differential doesn’t affect exactness,
in fact the homology groups of the new complex are simply H, (Ci1;(—)) =

Hyyj(Ce(=))-

Proof. The proof is a direct translation of [Wei94, Theorem 2.7.2, p.58] into
the setting of modules over €. Form three double complexes, M (+) ®¢ Pi(+),
Q+(4) ®¢ Pu(+) and Q.(+#) ®¢ A(+). The augmentation maps ¢ : P.(—) —
A(=) and 1 : Q«(—) — M(—) induce maps between the total complexes,

Tot (Qu(#) ®e Pu(#)) — Tot (M(£) @¢ P(#)) = M(#) @¢ Pu(#)

Tot (Q+(#) ®e Pi(#)) — Tot (Qu(#) ®c A(#)) = Qs(#) ®e Ax(#)

Where Tot denotes the total complex of a bicomplex of R-modules (see [Wei94]
1.2.6] for the definition of total complex). We claim that these maps are weak
equivalences. Define a new double complex C.., by adding A.(#) Q¢ Qu—1(+#)
in the (—1) column of P,(+) ®¢ @+ (+), giving the following complex. Note that
we need to shift @), so that the resulting complex is a bi-complex, without the

-19-



1.5 Finiteness Conditions

shift the horizontal and vertical differentials would not anti-commute.

A(#) ®e Qo(#) =—— Ro(#) ®e¢ Q2(#) <— Pi(#) e Qa(#) =— -+

A(#) ®e Q1(#) =—— Bo(#) ©e Qi(#) =<— Pi(#) @e Q1 (#) =— -+

A(#) ©e Qo(#) =—— Po(#) ®¢ Qo(#) =—— P1(#) ®e Qo(#) <— -

0 0 0

By inspection, the complex Tot(Cyy).41 is the mapping cone of € ®¢ idg, so
it suffices to show it is acyclic (see [Wei94, §1.5]). But this follows from the
Acyclic Assembly Lemma [Wei94] 2.7.3], since the flatness of Q;(—) means the

functor ¥ ®¢ Q;(+) is exact for all ¢ and hence the rows of C.. are exact.
Similarly, the mapping cone of idp ®¢n is the complex Tot( Dy )«+1, where
D, is the double complex obtained by adding Py_1(+#) ®¢ B(+) in row (—1) to
the complex Pi(+#) ®¢ Q. (+). Since P;(—) is flat for all i, P;(+#) Q¢ T is exact,
and the columns of D, (—) are exact. Thus Tot(D..).+1 is acyclic, again by the
Acyclic Assembly Lemma [Wei94, 2.7.3], showing idp ®¢1n is a weak equivalence.
O

Torf could also be calculated using flat resolutions instead of projective res-
olutions. The standard proof of this in the case of modules over a ring goes
through with almost no modification, see for example [Wei94] 3.2.8]. Similarly,
we could calculate Extg using injective resolutions, again the proof is the stan-
dard one.

Remark 1.26. We could define a notion of weak dimension of the category
of €-module, mirroring that for modules over a ring, by saying that the weak
dimension is the maximal length of a flat resolution of any €-module, or equiv-
alently

sup{i : Tor®7 (M(+), A(+)) # 0 for some modules A(—) and M(—) }

Proposition then implies the weak dimension of the categories of covari-
ant and contravariant modules coincide, since Tor*of can be calculated using
covariant or contravariant resolutions.

1.5 FINITENESS CONDITIONS

As discussed in Section[I.2] the category of €-modules has enough free modules,
thus for any €-module A(—) we can build a free resolution of A(—).

e — Fl(—) — Fo(—) — A(—) — 0
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Following ordinary module theory, A(—) is said to be finitely generated if Fy(—)
can be taken finitely generated, and finitely presented if both Fy(—) and Fy(—)
can be taken finitely generated.

Lemma 1.27 Every €-module A(—) is the colimit of its finitely generated sub-
modules.

Proof. Every element a € A(x) is contained in some finitely generated sub-
module, namely the image of the map R[z, —]¢ — A(—) sending id, — a. Such
a map exists by the Yoneda-type Lemma[I.5] For the contravariant case simply
replace R[z, —|¢ with R[—,z]e. O

We define projective and flat dimension as one would expect, the projective
dimension of a contravariant ¢-module A(—) is the minimal length of a projec-
tive resolution of A(—) and the flat dimension is the minimal length of a flat
resolution. These can be characterised as the vanishing of the Ext} and Tor®
groups as is ordinary homological algebra.

We say a €-module A(—) is €FP,, if there is a projective resolution of A(—)
which is finitely generated up to degree n. Clearly €FPy is the same as finitely
generated and €FP; is the same as finitely presented.

There is an analog of the Bieri-Eckmann criterion of [BE74], see also [Bie81l,
Theorem 1.3]. A proof in the case that € = Oz appears in [MPN11, Theorem
5.3].

Theorem 1.28 Bieri-Eckmann Criterion
The following conditions on any €-module A(—) are equivalent:

1. A(-) is CFP,,.

2. If By(—), for A € A, is an filtered system of €-modules then the natural
map

lim Extt (A(£), Ba()) — Ext&(A(£), lim Br(4))
A A

is an isomorphism for £ < n — 1 and a monomorphism for k = n.

3. For any filtered system B)(—), for A € A, such that lim By(-) =0,
lim Exte (A(£), BA(#)) = 0
A

for all k£ < n.

There is also a version of the Bieri-Eckmann criterion using Tor? instead of
Exty, see [Bie81l Theorem 1.3] for the classical case and [MPN11], Theorem 5.4]
for the case € = Og.

Proof.1 = 2 Choose a free resolution F.(—) of A(—) by €-modules, finitely
generated up to dimension n and a directed system By (—), for A € A, of
¢-modules. Since directed colimits are exact [Wei94l 2.6.15], hﬂ commutes
with the homology functor H*.

limy H* More(P.(£), BA(#)) = H" liy More(P. (#), Bx(£))

—
A A
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2=3
2=1

The result follows from Lemma [1.29] which gives that in the commutative
diagram below, the left hand map is an isomorphism and the right hand
map an epimorphism.

e li_n>1A More(Pp—1(—), Ba(—)) — li_ngA More (P (=), Bx(—=)) — -+

- |

= More(Pu—1(), lim, Bx(~)) — More (P, (~), iy, Ba(~)) — - -

This step is obvious.

Let n = 0 and consider the directed system A(—)/C\(—), where Cy(-),
for A € A, runs over all finitely generated submodules of A(—). Since any
¢-module is the colimit of its finitely generated submodules (Lemma [1.27])

ling A(-)/C5(-) =0
By assumption then

I'%Mora-(fl(—), A(=)/Cx(=)) =0
Thus the canonical projection

™ A=) — A(=)/Ca (=)

is zero in the direct limit, so there exists some A € A for which 7w, = 0,
thus C\(—) = A(—) and A(—) is finitely generated.

If n > 1 then by the above we know A(—) is finitely generated, a di-
mension shifting argument completes the proof. Pick a finitely generated
free €-module F(—) with an epimorphism onto A(—), giving a short exact
sequence:

0— K(—-) — F(-) — A(—) —0

Let By be a directed system with @BA(—) = 0, by the Ext-long exact
sequence,

lim Exty (K (—), BA(<)) = 0
A

for all £k < n — 1 and by the induction hypothesis we get that K(—) is
C¢FP,,_1. Choose a projective resolution Q. (—) of K(—), finitely generated
up to dimension n — 1, then

- Qu) = Qo(=) — F(=) — A(-)

is the required resolution of A(—), where the map from Qo(—) to F(—) is
the composition
Qo(=) — K(=) — F(-)
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1.5 Finiteness Conditions

Lemma 1.29 Given any filtered system By(—), for A € A, of €-modules, the
natural map

lim More (A(=), Bx(—)) — More <A(—), lim B)\(_)>
xeA NeA

is an epimorphism when A(—) is finitely generated and an isomorphism when
A(-) is finitely presented.

Proof. We provide a proof for covariant modules, that for contravariant is
similar.

The fact that the natural map is an isomorphism when A(—) is finitely
generated free will be needed for the proof. This is because of the following
chain of isomorphisms

More (@ Rlz;, —]e, lim B)\(_)> = @MOTC (R[xi» —le, lim B,\(—)>

iel Aeh icl AEA
@iy 7o)
el AEA
o @ ling More (R[z;, —]e, BA(—))
icl AEA
o hél’l Morg <@ Rlx;, —]Q‘,BA(_)>
AeA iel

Where the first and last isomorphisms are because |I| < co and the second and
third are the Yoneda-type Lemma|l.5|and that colimits are computed pointwise.
We can now prove the lemma, choose free €-modules Fy(—) and Fy(—) with

an exact sequence
Fl(_) — FQ(—) — A(—) — 0

If A(—) is finitely generated we may choose Fy(—) finitely generated and if A(—)
is finitely presented then Fj(—) may be chosen finitely generated also. There is
a commutative diagram with exact rows

@Morg(Fl,B)\) — hﬂMOrQ:(FO’BA) H@MOI‘@(A,B)\) —0

i l l

MOrg(Fl,@BA) — Morg(Fo,ligBA) — Morg(A,ligBA) —0

If A(—) is finitely generated then since Fy(—) is finitely generated, the central
vertical map is an isomorphism, and the result follows from the four lemma. If
A(—) is finitely presented then Fy(—) and Fj(—) are finitely generated, the
central and left hand maps are isomorphisms and the result follows from the
five lemma. O

-23-



1.6 Change of Rings

Lemma 1.30 If
0— A(-) — B(-) —C(-)—0
is a short exact sequence of €-modules then

1. If A(—) and B(—) are €FP,, then C(—) is €FP,,.
2. If A(—) and C(—) are €FP,, then B(—) is CFP,,.
3. If B(—) and C(—) are €FP,, then A(—) is €FP,,_1.

Proof. Use the long exact sequence associated to Exty and the Bieri-Eckmann
criterion (Theorem [1.28]). O
1.6 CHANGE OF RINGS

If o : Ry — Ry is a ring homomorphism then we define the change of rings
functor ¢* from @€-modules over Ry to €-modules over R; as follows.

P A(=) x> A(x)

P A <Z riai> = Z(p(ri)A(ai)

Where r; € Ry and the «; are morphisms x — y for some x,y € €.

Such a ¢ also allows Ry to be viewed as an Ri-module. If A(—) is a €-module
over R; then the tensor product Ry ®pg, A(—) is an €-module over Ry, where
Ry ®pg, A(—) is the €-module defined by x — Ry ®p, A(x). Applying this to a
free module

Ry ®p, Rz, —]¢ = Ralx, e

Hence if P(—) is a projective €-module over R; then Ro®p, P(—) is a projective
¢-module over Rs.

Proposition 1.31 If ¢ : Ry — Ry is a ring homomorphism and A(—) is a
covariant €-module then

Tor{™ (R, (#), ¢" A(£)) = Tori™(By(4), A(#))

There are similar isomorphisms for contravariant modules and for Exty.

Proof. Firstly, consider the case ¢ : Z — R for some ring R, we prove

Tory “(Z(+#), 9" A(#)) = Tor"“(B(+), A(+))

Choose a resolution P.(—) of Z(—) by contravariant projective €-modules over
Z. For any z in €, P,(x) is a Z-split resolution, so applying the functor R ®z —
to P,(—) yields a projective resolution of R(—) by projective €-modules over R.
Observing that

Pu(#) ©ez 9" A(#) = (Pu(#) @z R) @e.r A(#)

-24 -



1.6 Change of Rings

Completes the proof. This isomorphism can be seen by looking at the definition
of ®e¢ r.

= (P.(#) @z R) @0, A()

For the general case, let ¢; : Z — R; and ¢y : Z — Ry be the unique ring
homomorphisms, then ¢ o 91 = @9 and ¢} o * = ¢5. Applying the previous
part twice
Tor " (By(4), 9" A(#)) = Tory “(Z(#), ¢1 © ¢" A(+))
= Tor [ (By(#), A(#))

O

The following result is essentially [HamO8|, 1.4.3], where is it proved for rings
of prime characteristic in the setting of ordinary group cohomology.

Proposition 1.32 Given some integer m > 0 and ring R with characteristic
m, then R(—) is €FP,, over R if and only if Z/mZ(—) is €FP,, over Z/mZ (here
R(—) and Z/mZ(—) are either both covariant or both contravariant modules).

Proof. The proof below is for contravariant modules, the proof for covariant
modules is analogous.

Assume that Z/mZ(—) is €FP,, over Z/mZ. If M,(—) is any directed system
of contravariant €-modules over R with lim M,(—) = 0, we necessarily have
@@*M*(—) = 0. By Theorem @ and the fact that Z/mZ is assumed €FP,,
over Z/mZ, we have that for all 7 < n,

lim Exte 7,/mz(Z/mZ(+), ¢* M. (#)) = 0

Thus by Proposition applied to the canonical map Z/mZ — R,

lim Extl p(B(#), M.(£)) = 0

Theorem [1.2§| gives that R(—) is €FP,, over R.

For the “only if” direction, suppose M, (—) is a directed system of €-modules
over Z/mZ, with hﬂM*(—) = 0 thus hglM*(—) ®z/mz R =0 and by Theorem
for all i < n,

lim Ext, g (B(£), Mo(£) 92z B) = 0
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Combining with Proposition [1.31
li Bxt}, o (Z/mZ(+#), Ms(+) ©z/mz R) = i Exty, o (R(£), Mu(#) @z/mz R)
=0

Since Z/mZ is self-injective [Lam99, Cor 3.13|, R splits as a Z/mZ module
into R = Z/mZ & N where N is some Z/mZ module. Thus we have

liny ( Btz (Z/mZ(#), Ma ()
& Exth g, e (Z/mL(#), Mo(#) Gz /mz N)) = 0
In particular

thXt%/mZ,c(Z/mZ(%% M.(+))=0
So by Theorem Z/mZ(—) is €FP,, over Z/mZ. O

Remark 1.33. This proposition fails in characteristic zero as the ring Z is not
self-injective. For example Q is not isomorphic, as a Z-module, to N ® Z for
any Z-module N.
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2 BREDON MODULES

Given a family F of subgroups of G, closed under subgroups and conjugation,
recall from Example the Orbit Category O is the category whose objects
are transitive G-sets and whose morphism set [G/H, G/K]o, is the free abelian
group on the set of G-maps G/H — G/K. Since we will be dealing exclusively
with the orbit category for much of this Section, we will write [G/H,G/K]
instead of [G/H,G/K]o, when there is no possibility for confusion.

From now on we specialise to the family of all finite subgroups of G, setting
F = Fin. Many of the results remain true for arbitrary families, and this will
be mentioned where possible.

Contravariant modules and their associated finiteness conditions are very
well studied, as they provide a good algebraic setting to mirror the geomet-
ric world of proper actions. This background has already been discussed in
the introduction. For additional information about the interplay of the geome-
try of proper actions and the finiteness conditions discussed in this section see
[BLNOI].

Sections 2.1} 2.2]and [2.3] will specialise information from Section[I]to modules
over the orbit category, and the later sections will discuss finiteness conditions
over the category of covariant and contravariant modules over the orbit category.

In Section [1} the categories € considered were not assumed to have property
(EI), see Remark The first important observation is that the orbit category
O does have (EI), since any G-map « : G/K — G/K is automatically an
automorphism. The first task is to determine the internal structure of the
category Or.

Remark 2.1. Morphisms in Og.

A G-map o : G/H — G/K is completely determined by the element
a(H) = gK, and such an element gK € G/K determines a G-map if and
only if HgK = gK, usually written as gK € (G/K)¥. The identification
R[G/H,G/K] = R|(G/K)H] will be used freely from now on.

Equivalently an element gK determines a G-map « : H — gK if and only if
g 'Hg < K. Notice that the isomorphism classes of elements in O, denoted
Iso O, are exactly the conjugacy classes of subgroups in F.

Remark 2.2. Structure of Aut(G/H).
If

ag:G/H— G/H
H|—>gH

is any G-map then such an a, determines a G-map if and only if g € WH =
NgH/H. Furthermore oy, o ag = gy, 5o combining these two pieces of infor-
mation,

Aut(G/H) = WH°P

As described in Remark if A(—) is a covariant €-module then eval-
uating at x gives A(z) an REnd(z)-structure. Thus evaluating a covariant
Bredon module at gives a left R[WW H°P]-structure, equivalently a right R[W H]-
structure.
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2.1 Free Modules

Similarly, evaluating a contravariant Bredon module M(—) at G/H gives
M(G/H) aleft R[Aut(G/H)] = R[W H°P| structure, equivalently a left R[W H]-
module structure. This reversing of left and right structures is unfortunate,
it would be possible to treat A(G/H) as a left R[W H]-module via the map
g+ g~ ! and similarly for M (G/H), but we choose not to do this as it makes the
notation more confusing when we are dealing with the action on free modules, for
example when we compute the right action of RiW H| on R|G/K, —|o,(G/H) =
R|G/K,G/H]o, in Example[2.3]

2.1 FREE MODULES

In this section we describe the structure of free Bredon modules. Throughout
this section H and K will denote finite subgroups of a group G. In fact, all the
results in this section remain true over arbitrary families of subgroups, except
for Corollary 2.7 and Lemma[2.8]

Example 2.3. Right action of R[W K] on R|G/H,—|(G/K) = R|G/H,G/K]
The action of WK on R[G/H,G/K] is as follows: If f € R[G/H,G/K] with
f(H) =gK and w € WK then

f-w=R[G/H, )(f) = cwo f

Since (a0 f)(1) = gwK, under the identification R[G/H,G/K] = R[(G/K)],
the action is given by gK - w = gwK.

Lemma 2.4 There is an isomorphism of right R[W K]-modules

R|G/H,-|(G/K) = R[G/H,G/K] = &P RIWK]
gNcKEG/NgK

Proof. Firstly, R[G/H,G/K] = R[(G/K)H] is a free WK-module, since if
n € NgK such that gnK = gK then nK = K and hence n € K. Now, gK and
¢'K lie in the same W K orbit if and only if g(WK)K = ¢'(W K)K, equivalently
gNgK = ¢'NgK, and gK determines an element of R[(G/K)¥X] if and only if
g 'Hg < K. Thus there is one R[W K] orbit for each element in the set

{gNgK € G/NgK : ¢ 'Hg < K}
0

For contravariant modules the situation is more complex, evaluating at
G/H doesn’t always give a free R[W H|-module, although it does always give a
R[W H]-module of type FP,,. This is proved in the case R = Z in [KMPNQ9,
Proof of 3.2], the proof for general rings R requires no substantial change, and

is given in Corollary

Example 2.5. Left action of R[WH| on R[—,G/K]|(G/H) = R[G/H,G/K].
A similar argument to the previous example shows that under the identification
R[G/H,G/K] = R[(G/K)"], the action of RW H] is given by w - gK = wgK.

-928-



2.1 Free Modules

Lemma 2.6 There is an isomorphism of left R[WW H]-modules:
R[-,G/K|(G/H) = R|G/H,G/K] = @ RIWH/W H, ]
Where = runs over a set of coset representatives of the subset of the set of
NgH-K double cosets.
{r € NgH\G/K : 2 'Hx < K}
and the stabilisers are given by

WH,x = (NcHNzKa™") /H

Proof. Using the identification [G/H,G/K] = (G/K)™, the elements K and
yK are in the same W H-orbit if there exists some nH € W H (where n € NgH)
with

nHzK = yK < nzK = yK < (NgH)zK = (NgH)yK

Combining this with the fact that 2K € (G/K)f if and only if z 7 'Hz < K
means there is a W H-orbit for each NgH-K double coset NgHxK such that
x 1 Hz < K, ie coset representatives for

{r € NgH\G/K : 2 'Hx < K}

are orbit representatives for the W H-orbits in [G/H, G/K].
The Ng(H)-stabiliser of the point 2K € (G/K)* is the set

{g€ Ng(H) : grK =2K}={g€ Ng(H) : g€ Kz~ '} = Ng(H) NxKz™*
So the W H-stabiliser of 2K € (G/K)! is WH, = (Ng(H)NzKz=1)/H. O
Corollary 2.7 R[-,G/K](G/H) = R|G/H,G/K] is a finite direct sum of

projective R[W H|-permutation modules of type FP., with finite stabilisers. In
particular R[G/H,G/K] is FP.

Proof. Since K is finite, the set {x € NoH\G/K : 2~'Hz < K} is finite and
R[W H] can be written as a finite direct summand

R[G/H,G/K] = P RWH/W H,]

W H,k is a finite group and as such R is FP, as a R[W H,xk]-module.

RWH/WH,k] = Indg%ﬂﬂ R

We apply Lemma [2.8 below and deduce that R[W H/W H, k] is FPo, as a RG-
module. Finally, any finite direct sum of FP,, modules is FP,. O
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2.2 Restriction, Induction and Coinduction

Lemma 2.8 If M is FP,, as an RF-module for some subgroup F' < G, then
mdR% M = RG @rp M is FP, as an RG-module.

Proof. Let [[, N; be an arbitrary direct product of RG-modules, then

TorE¢ (mﬁ% M, H Ni> = Tor®F <M, H NZ)
i i

= H TorBF (M, N;)

3

= [ Tor®@ (Indggi M, Ni)

where the first and third equalities come from Shapiro’s Lemma. This finishes
the proof as IndX% M is FP, if and only if Tor®¢ (Ind%% M, —) commutes with
direct products [Bro94, Theorem VIII.4.8]. O

2.2  RESTRICTION, INDUCTION AND COINDUCTION

We specialise the constructions of Section to the categories of covariant and
contravariant Bredon modules. We write Indgf A instead of IndgFAut(G JH) A,
and similarly for restriction and coinduction.

Example 2.9. If R is the trivial RG module then
md"*" R(-):G/H — R®pg RIG/H] = R

Checking the morphisms as well, Ind?? ’ R(—) = R(—), the constant covariant
functor on R.

A group is said to contain no R-torsion if for every finite subgroup F' < G,
|F'| is invertible in R. For example every group has no Q-torsion. If

|F'| = pi™* o

is a prime factorisation of |F| then for each p; there is an element of order p;
by Cauchy’s Theorem. [Rob96, 1.6.17] Since the invertible elements R* form
a group, if all the p; are invertible in R then so is |F|. Hence a group has no
R-torsion if and only if the order of every finite-order element is invertible in R.

Recall from Proposition that covariant and contravariant restriction is
exact, in addition we have the following:
Proposition 2.10 1. Covariant restriction preserves projectives and flats.
2. Contravariant restriction preserves finite generation.

3. Contravariant restriction at H preserves projectives and flats if WH is
R-torsion-free, if not then contravariant restriction takes projectives to
FP,,-modules.

Proof. 1. If P(—) is a projective covariant Bredon module and F(—) a free
covariant Bredon module with a split epimorphism F(—) —» P(—) then
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2.2 Restriction, Induction and Coinduction

restricting at G/H yields a split epimorphism F(G/H) — P(G/H), by
Lemma [2.4] F(G/H) is free and thus P(G/H) is projective.

If F(—) is a flat covariant module and M any left R[W H]-module then,

F(G/H) @rwm M = (R[4, G/H] ®o, F(+)) ®rwm M
= (R[+,G/H]) @gwm M) @7 F(#)

Where the second isomorphism is Remark
Thus for any short exact sequence of left R[W H]-modules.

0—M —M-—M —0

Applying F(G/H)® giw i) — is equivalent to applying first the contravari-
ant induction functor and then 1 ® # F/(+). Since contravariant induction
is exact (Proposition 2)) and F(—) is assumed flat, exactness is pre-
served, and thus F(G/H) is flat as required.

. Use the argument of the previous part, noting that Lemma [2.6] implies
that for contravariant frees, unlike for covariant frees, restricting at G/H
preserves finite generation.

. If WH is R-torsion-free then, using Lemma [2.6] restricting any free at
G/H gives a projective module, and the result follows. To see that in this
case, restriction preserves flats, let F(—) be a contravariant flat module
and consider a short exact sequence

0—A—B—C-—0
of left R[W H]-modules, thus by Proposition below,
0— Indy” A(-) — Ind$” B(-) — IndS* C(=) — 0

is a short exact sequence of covariant modules. Since F(—) is flat, the
functor t ®o, F'(#) is exact, applying this to the above and using Lemma
[1.21] gives a short exact sequence

0—A®r F(G/H) — Ber F(G/H) — C®r F(G/H) — 0

Showing F(G/H) is flat.
If WH is not R-torsion free then the result is just Corollary
O

Example 2.11. Unlike in the contravariant case, the covariant restriction func-
tor does not preserve “finitely generated” in general: Take for example the in-
finite dihedral group Do, = Zs * Zo generated by the two elements a and b of
order 2. The finite subgroup (a) is self-normalising, thus R[W(a)] = R and
Lemma [2.4] implies that as R-modules

R[Dw/1,Ds/(a)l= €& R

g{a)€Des/{a)
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2.2 Restriction, Induction and Coinduction

Remark 2.12. The functor Res?;ov preserves “finitely generated”. Recall that

RG i K=1
0 else.

RIG/K,G/1] = {

So if A(—) is an arbitrary finitely generated covariant Bredon module and F'(—)
a free covariant Bredon module with an epimorphism onto A(—) then F(G/1) is
finitely generated as an RG-module and since Res; is exact there is a surjection

F(G/1) —» A(G/1).

Recall from Proposition[I.20] that contravariant and covariant induction both
preserve projectives, flats and finitely generation. In addition we have the fol-
lowing facts, which will play a crucial role in analysing finiteness conditions for
covariant Bredon modules in Sections 2.4] and 251

Proposition 2.13 1. If W H has no R-torsion the covariant induction func-
tor Indgf is exact.

2. Contravariant induction is always exact.

Proof. 1. Assume that W H has no R-torsion, we must check that the func-
tor
Avr— AQgwn) RIG/H, ]

is exact, where A is an R[W H|-module. Equivalently that for any finite
subgroup K of G, the functor

— ®rwau) RIG/H,G/K]
is exact, but by Lemma [2.6

R[G/H,G/K] =P RWH/WH,]

zel

For some finite indexing set I and W H, finite subgroups of WH. By
Maschke’s Theorem, R[W H/W H,]| is projective, and hence flat, as an
R[W H] module. Hence — ®gyw ) R[G/H,G/K] is indeed exact.

2. Similarly to the above, we must check the functor
R[G/K,G/H] @pwn) —

is exact, but by Lemma R|G/K,G/H] is free as an R[W H]-module
so this is automatic.
O

In summary:
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2.3 Covariant Homology and Cohomology

Covariant restriction is exact and
preserves both projectives and flats.
Covariant restriction at G/1 pre-
serves finite generation.

Contravariant restriction is exact
and preserves finitely generated, the
restriction at G/H of a projective is
projective if WH is R-torsion-free,

else it is FP,.

Contravariant induction at H is ex-
act and preserves projectives, flats
and finite generation.

Covariant induction at H is right
exact and preserves projectives,
flats and finite generation. If W H is
R-torsion-free, covariant induction
is exact.

Covariant coinduction at H pre-
serves injectives and is left exact.

Contravariant coinduction at H
preserves injectives and is left exact.

2.3 CoVARIANT HoMOLOGY AND COHOMOLOGY

We make the following definitions for any contravariant Bredon module M (—),
any covariant Bredon module A(—), and R(—) the constant covariant Bredon
module.

cov-HY7 (G, M (#)) = Tor?” (M (4), R(#))
cov-Hp (G, A(#)) = Ext},  (R(+#), A(4))

Note that the Extg, . above is taken with two covariant modules, in contrast to
the usual usage with two contravariant modules.

Proposition 2.14 For any contravariant Bredon module M (—) and covariant
Bredon module A(—).

1. cov-HO7 (G, M(4)) = H.(G, M(G/1)).
2. If G has no R-torsion then cov-Hy (G, A(+)) = H*(G, A(G/1)).

Proof. 1. Let F, be a resolution of R by flat right RG-modules, then by
Proposition and Example Ind?f F,(—) is a resolution of R(—)
by flat covariant Bredon modules. Applying M (—) ®o, — yields the res-
olution

M(#) ®os (Fx ®@ra R[G/1,#]) = F. ®ra (M(#) ®o5 R[G/1,#])
= F, Qro M(G/l)
Where the above two natural isomorphisms are from Remark [[.17] and
the Yoneda-type Lemma (|1.5). Finally, since homology can be calculated
from a flat resolution [Rot09, 7.5],
cov-HO7 (G, M(4)) = H, (M(=) ®o, (P, ©r RIG/1,4]))
=~ H, (P* ®RrG M(G/l))
= H.(G,M(G/1))

2. Let P, be aresolution of R by projective right RG-modules, by Proposition

and Example Ind?g‘?v «(—) is a resolution of R(—) by projective
covariant modules. Apply Morp . (—, A(+#)) to get the resolution

Moro (E: P.(4), A(#)) = Hompe (P, A(G/1))
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2.4 Covariant Cohomological Dimension

The isomorphism is the adjoint isomorphism between induction and re-
striction. Thus

cov-H, (G, A(#)) = H* Moro, (Indy* P.(+#), A(#))
~ H*Hompa(Py, A(G/1))
~ (G, A(G/1))

2.4 COVARIANT COHOMOLOGICAL DIMENSION

This section is devoted to an analysis of finiteness conditions for covariant mod-
ules. Fix an orbit category Or and ring R. Recall from Section [I.5] that a
group G has O%Ycdr G < n, or covariant cohomological dimension less than
n if the constant functor R(—) has O®Y cdr R(—) < n. Similarly for covariant
homological dimension. The covariant cohomological dimension and covariant
homological dimension are easy to classify.

Theorem 2.15 1. The conditions covariant-O%F" cdg G <nand cdr G < n
are equivalent.

2. The conditions covariant-O%" hdr G < n and hdr G < n are equivalent.

Proof. 1. If G satisfies O%Y cdr G < n then, by Proposition if P.(—)
is a length n projective resolution of R by projective Oz-modules then
P.(G/1) is alength n projective resolution of R by projective RG-modules
and thus cdr G < n
For the converse, note first that cdg G < n implies that G has no R-
torsion. Pick a length n projective resolution of R by projective RG-
modules and consider (Ind?;‘o ’ P,)(—), this is a resolution of R(—) by
projective Bredon modules by Propositions and Example

2. This is proved exactly as in the previous case. If G satisfies OFY hdr G < n
then take a length n flat resolution Fi(—) of R(—), by Propositions
and and Example F.(G/1) is a length n flat resolution of R by
RG-modules. For the converse take a finite flat resolution of R by RG-
modules, apply the extension functor Ind?? " and use Proposition
and Example again.

O

2.5 COVARIANT FP, CONDITIONS

This section contains two observations about the covariant Oz FP,, conditions.
Recall that a group G has covariant-Ox FP,, over a ring R if there is a resolu-
tion of the constant functor R(—) by projective covariant Oz-modules, finitely
generated up to dimension n.

Theorem 2.16 If GG is covariant-Ox FP,, then G is FP,,, if G has no R-torsion
and is FP,, then G is covariant O FP,,.
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2.6 Contravariant Cohomological Dimension

Proof. For the “only if” part, take a projective resolution P,(—) of R by covari-
ant projective modules, finitely generated up to dimension n, apply Proposition

and Remark to get that P,(G/1) is a projective resolution of R by
projective RG-modules, finitely generated up to dimension n.

For the “if” part, choose a projective resolution P, of R by projective RG-
modules, finitely generated up to dimension n. Then the induced resolution

Ind?? ’ P.(—) is a resolution of R(—) by projective covariant Bredon modules,
finitely generated up to dimension n by Proposition and Example O

Proposition 2.17 1. Every group G is covariant-Ox FPq over R.

2. G is covariant-Ox FP; over R if and only if G is FP; over R if and only
if G is finitely generated.

Proof. 1. The augmentation map R[G/1,—] — R(—) is an epimorphism.

2. Choose finitely generated projective RG-modules Py, P; with an exact
sequence

P—PFP—R—0 (%)

The induction functor is always right exact, preserves projectives and

preserves “finitely generated” (Proposition . Finally Example

shows Ind??v R(—) = R(—), so applying Ind?’~£>v to (%) completes the

proof.
O

Question 2.18. Is there a nice characterisation of the condition covariant-
Oz FP,, over R, for groups which are not R-torsion free?

2.6 CONTRAVARIANT COHOMOLOGICAL DIMENSION

This subsection lists some well-known results concerning Bredon cohomological
dimension over arbitrary rings, with proofs given for results not easily available
in the literature.

Lemma 2.19 1. If cdz G < n then cdr G < n for all rings R.
2. IF Orcdz G < n then Orcdr G < n for all rings R.

Proof. 1. Take a projective resolution P, of Z by ZG modules of length n,
it is acyclic over Z and hence Z-split. P, ®z R is a projective resolution
of R by RG-modules of length n.

2. Take a projective resolution of Z by contravariant modules of length n,
define a new resolution by Q,(G/H) = P,,(G/H) ®z R for all n € N and
G/H € Og. The tensor product here is the tensor product of Section
. 1.2

— ®z R : {Or-modules} — {Ox-modules}

(M(~) @z R)(G/H) = M(G/H) @z R

By the argument of the previous part, Q.(G/H) is acyclic for all G/H
and so @, is acyclic. Finally we show that each @, is projective as an
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2.6 Contravariant Cohomological Dimension

contravariant module over R: Since P, is projective there is a split short
exact sequence

0— K — @z~ G/H] — P, —0
el

where [ is some index set and H; is a finite subgroup for all i. Since
(@Z ,G/H;)(G/H) ) ®z R= (@R ,G/H] ) (G/H)
i€l i€l

there is a split short exact sequence

0— K’ —>@R[—,G/Hi] —Qn —0
i€l

and @, is a projective contravariant module over R.

We'll need the following two well known lemmas.

Lemma 2.20 [Bie81l Proposition 4.11] If cdg G < n for some n € N then G
has no R-torsion.

Lemma 2.21 [Bie81l Propisition 4.12] R[G/H] is a projective RG-module if
and only if |H| is finite and invertible in R.

| Lemma 2.22 For any ring R, if G has no R-torsion then cdgr G < OxcdgrG.

Proof. Take a projective resolution of contravariant modules over R of length
n and evaluate at G/1, since G is R-torsion-free, Proposition implies that
P,(G/1) is a length n projective resolution of Z by ZG-modules. O

There is the following generalisation of Serre’s theorem for R-torsion free
groups (see [Bro94, VIIL.3] for the classical case).

Theorem 2.23 [Coh72, p.9 Theorem C] If R is commutative, G has no R-
torsion and H is finite index in G then cdg H = cdr G.

2.6.1 Low DIMENSIONS
We classify those groups with Oz cdr G =0 and Orcdz G =1

| Proposition 2.24 R(—) is projective if and only if G is finite.

An alternative proof of this is available in [Flul0, Prop 3.20], which is based
around a result in inci
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2.6 Contravariant Cohomological Dimension

Proof. Assume R(—) is projective and let H; be some collection of finite sub-
groups such that there is a split surjection

DR~/ = R(-)

Denote the splitting by @&;s : R(—) — @®;R[—, G/H,], where each s; is the map
R(-) = R[-,G/H;]. Counsider ®&m;(G/1) : ®R|G/1,G/H;] — R, the splitting
of this map must factor through only one factor of ®R[G/1, G/ H;], denote this
factor R[G/1,G/H;]. In other words s;(G/1) # 0 if and only if ¢ = 1. The
commutative diagram representing @;s; as a natural transformation looks as
follows (except here we’re only showing one finite subgroup K of G, and one

G-map a: G/1 = G/K).

REMCE @y RiG/K, G/ H)

a*_idl la*

R @y RiG/1,G/H]]

If s;(G/K) # 0 for some i # 1, then s;(G/1) # 0 by commutativity, leading to
a contradiction. Hence s; # 0 if and only if ¢ = 1 and we have a split surjection:

R[-,G/H)] — R(~)

Assume G is not finite, evaluating 7 at G/1 gives a split surjection R[G/H1] —
R, but this is impossible since G/H; is infinite. Hence G is finite.

For the converse, observe there is a unique map G/H — G/G and so the
ordinary augmentation map

e:R[-,G/G) — R(-)
e(G/H): f—1

is a surjection. O

This is an interesting contrast to the result that cdg G = 0 if and only if G
is finite with no R-torsion [Bie81) Proposition 4.12]

Lemma 2.25 For any group G, Orcdz G = 0 if and only if cdg G = 0 and
Orcdz G =1 if and only if cdg G = 1.

Proof. Lemma with H = G implies that ¢cdg G = 0 if and only if G is
finite. Combining this with Proposition we see that cdg G = 0 if and only
if O]: CdZ G=0.

If Or cdz G = 1 then Lemma implies Or cdg G < 1 and Lemma
implies cdg G < 1. Since G is not finite, cdg G = 1.

If cdg G = 1 then by [Dun79, Theorem 1.1], G acts properly and with finite
stabilisers on a tree 7. For any finite subgroup H < G, H acts on T, T # ()
and in particular T# is a sub-tree of T. [Ser03| 6.1, 6.3.1] T is thus a model for
EsG and Oxcdz G = 1. O
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Corollary 2.26 The following are equivalent for an infinite group G, and any
ring R:

cdr G = 1.

G has no R-torsion and acts properly on a tree.

G has no R-torsion and Orcdz G = 1.

G has no R-torsion and O cdr G = 1.

G has no R-torsion and cdg G = 1.

A

Proof.l = 2 If cdg G = 1 then G has no R-torsion by Lemma and by
[Dun79l Theorem 1.1] G acts properly on a tree.

2 = 3 If G acts properly on a tree then by the argument of Lemma the tree
is a model for E,G and hence Or cdz G = 1.

3 =4 Lemma/[2.19(2).
4 =1 Lemma [2.22)

3 < 5 Lemma [2.25
O

Question 2.27. What does the condition O cdr G = 1 represent? Is it equiv-
alent to Orcdz G =17

2.6.2 SOME INTERESTING EXAMPLES

Example 2.28. A group with cdy, G =2 and cdz G = 3.

See [Dav08, 8.5.8], although this example first appeared in [Bes93]. The
torsion-free subgroup G of the right-angled Coxeter group (W, S) corresponding
to the barycentric subdivision L of the ordinary triangulation of RP? is shown
to have cdz G = 3 and cdg G = 2. For an explanation of the notation used here
see [Dav08]. By the right angled Coxeter group corresponding to L we mean
the group W generated by a set S of involutions where S is in bijection with
the vertices of L and two involutions commute if and only if they are adjancent
in L. We use essentially the same argument as that on p.154 of [Dav0§].

Using Davis’ notation: If S is the poset of spherical subsets of S then let
0K = |S~¢| and form U(W,0K). (This is different from the usual construction
where we take K = |S| and consider U(W, K) instead). We wish to show that
U(W,0K) is Fs-acyclic. [Dav08| 8.2.8] goes through with arbitrary coefficients:
UW,0K) is Fs-acyclic if and only if (OK)r is Fs-acyclic for all spherical subsets
T € S. Recall that Kr denotes the intersection of mirrors Nger K, where a
mirror K is [S>g].

If T # @ then (0K )7 = Kt which is contractible and hence Fz-acyclic and if
T = 0 then (0K)7 = 0K which is the barycentric subdivision of L = RP? and
hence Fs-acyclic. Thus the torsion-free subgroup G of finite index in W acts
freely on an Fs-acyclic space U(W, 0K) and satisfies cdp, G < 2.

Recall [Bie81l, Corollary 3.6]: If R is hereditary and G is FP., over R and
L is any R-module, we have a short exact sequence

0 — HY(G,RG)®r L — HYG,L®g RG) — Tor{'(H"™ (G, RG),L) — 0
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We use this Lemma in the case R = Z (hereditary since Z is a PID [Rot09,
4.12]), L =TF3 and ¢ = 2, G is FP, since it acts properly and cocompactly on
UW,K). A calculation in [Dav08, Example 8.5.8] gives

H3(G,ZG) = H¥(W,ZW) = Ty

H*(G,7G) = H*(W,ZW) = 7
Tork(Fy, F3) = 0 so H?(G,FyG) = H>(W,FsW) = F® and cdp, = 2.

Tan Leary has pointed out to the author that much of the following argument
appears in [DLI8, proof of Theorem 2].

Example 2.29. A (not torsion-free) group with Orcdp, G = 2 and
O]: Cdz G=3.

Consider the group W of the above example (don’t pass to a finite index
torsion-free subgroup). U(W, K) is known to be a model for Eg, W [Dav08|
Theorem 12.3.4(ii)] and thus Oz cdz W < 3. To see that Oz cdz W = 3 calcu-
late as in [LNO3| p.147], where X*"8 denotes the singular set of a CW complex
X - the subcomplex with non-trivial isotropy.

Extd_(Z(4),Z[},G/1]) = HE(UW, K),U(W, K)*¢; ZG)
= H3(U(W, K),U(W,0K); ZG) (%)
= H3 Hong(C* (U(W, K); U(VV, 3K)), ZG)

Recall (W, K) = W x K/ ~ where the identification is only on W x K and
(K,0K) ~ (CRP?,RP?). Here CX denotes the cone on a space X. U(W,0K) is
precisely the subset of U (W, K) with non-trivial isotropy. The cochain complex

K* = Homgg (C.(UW, K),U(W,0K)), ZG)

is generated by ZG-maps f : C,(U(W, K)) — ZG vanishing on U (W, 0K). Fix
some Ky C U(W, K), a copy of K inside U(W, K). A map f, non-zero on only
one G-orbit of cells in C.(U(W, K),U(W, OK)), is completely determined by the
value it takes on Cy,(Ky) = Cp,(K) and an element g € G. K* is generated by
such maps so we conlude K* = C*(K,0K) ®z ZG = C*(CRP?, RP?) @7 ZG.

HEUW, K),U(W,0K); ZG) = H?(CRP?* RP?; Z) @z ZG
=~ H*(RP* Z) ®z ZG
=F,G

Where the last isomorphism is from the long exact sequence of the pair
(CRP?,RP?). Now (x) implies O cdz W > 3 and so in fact O cdz W = 3.

U(W,0K) is the singular set of U(W, K), so in particular the fixed point sets
of finite subgroups (except for the trivial subgroup) agree. They are contractible
and hence F3-acyclic. Since U (W, 0K) is also Fs-acyclic, taking the Bredon chain
complex

P, :G/H v C,(G/H) @ Fs

where C,(—) is the usual Bredon chain complex associated to U(W,0K) gives
Orcdp, W < 2.
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W is a right-angled Coxeter group so its spherical subgroups correspond to
simplices in L, the finite subgroup corresponding to an n-simplex is &7Z2 and
has order 2. Any finite subgroup is subconjugated to a spherical subgroup
[Dav08, Theorem 12.3.4(i)], so any finite subgroup of W has order a power of
2, thus W has no Fs-torsion. By Corollary 2.26] O cdg, W = 1 if and only
if Orcdz W = 1 but we have already shown that Oz cdz W = 3 proving that
Orcdp, W # 1 and in fact Or cdp, W = 2.

Example 2.30. A Group with cdg G # Orcdg G

In [LNO3], Leary and Nucinkis construct examples of virtually torsion-free
groups with vedz G = nm and OrcdgG = m(n + 1) for various integers n
and m. The construction relies on [LN03| Theorem 6], we show that groups
constructed using this theorem have Orcdg G = m(n + 1) as well. So since
cdg G < vedyz G this provides examples of groups with cdg G # Or cdg G.

All that is needed is to prove that groups G satisfying the assumptions of
ILNO3| Theorem 6] satisfy O cdg G > m(n+1) also, since combining this with
the inequality Or cdg G < O cdz G will give O cdg G = m(n+1) as required.
As part of Leary and Nucinkis’ proof, they show that for a model X for E,G,
the cellular chain complex C,(X™®+1 (Xm(n+1))sing) contains a copy of ZG
in dimension m(n + 1) as a direct summand. Here X denotes the i skeleton of
some CW complex X and X578 is the singular subcomplex of X - those cells of
X having non-trivial isotropy. Using Lemma below,

HE (G, QI4G/]) =BG (CL (X, X%, QG)
o~ Hg@(n—i—l) (C* (Xm(n+1), (Xm(nJrl))sing); QG)
#£0
Showing Or cdg G > m(n + 1).

The examples constructed with this method can never be of type Ox FP,
ILNO03| Question 2, p.154], so a natural question is whether this phenonemon
can occur for groups of this type:

Question 2.31. Do there exist groups of type Or FP, with cdg G # Or cdg G?
Lemma 2.32 For any group G and model X for E4,G,
H*(G, R[~,G/1]) = H;(C.(X, X¥"%); RG)

Where C, (X, X518) denotes the cellular chain complex of RG-modules associ-
ated to the pair (X, X&),

Proof. Firstly, if C.(X~) denotes the cellular chain complex of X as a con-
travariant O z-module,

H* (Mor@f (C*(Xsi“g)f,R[f,G/l])) —0

Since the G-orbits of cells in X®"8 all give rise to contravariant modules of the
form R[—,G/H] for H # 1, and by the Yoneda-type Lemma[L.5]

Moro, (R[#,G/H], R[#,G/1]) = R[G/H,G/1] =0
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Using the long exact sequence in homology associated to the pair (X, X®n8),

Hp, (G, R[#,G/1]) = H* Moro, (C.(X7), R[#,G/1])
= H* Mor(C, (X7, (X*"%)7), R[#,G/1]) (%)

Via the Yoneda-type Lemma [I.5] there is a chain of natural isomorphisms

Moro, (C. (X7, (X*"8)7), R[4, G/1))

= MOI“@F @ RH—,G/l],R[%,G/l]

G-orbits of i-cells
with trivial isotropy

= [[Moro, (R[+,G/1], R[4, G/1))
o H Hompgg(RG, RG)

= Hompga (@ RG, RG)
= Hompgg(Ck (X, XSing)a RG)

Thus
H*Moro, (C.(X7, (X*™8)7) = H* Hompq(C, (X, X*™8), RG)

and combining this with the isomorphism (%) completes the proof. O

2.7 CONTRAVARIANT FP,, CONDITIONS

This subsection builds up to Corollary that a group G is O FPy over R
if and only if it has finitely many conjugacy classes of finite subgroups and is
OzxFP,, over R if and only if it is O FPy and the Weyl groups WK = NgK/K
are FP,, over R for all finite subgroups K. Again, this result is well known when
R = Z but hasn’t been written down for general rings, although none of the
proofs require any substantial alteration to do this.

Proposition 2.33 [KMPNQ9, Lemma 3.1] G is Ox FP over R if and only if
G has finitely many conjugacy classes of finite subgroups.

Notice that this is independent of the ring R, so when speaking of Oz FP
we needn’t mention the ring R.

Proof. If G is O FP( then there is a finitely generated free contravariant
module F' and an epimorphism F —» R, since F is free there is a G-finite
G-set Q with finite stabilisers such that F' = R[—,)]. Let G, denote the point
stabiliser of z € Q, since gG,9~ ' = G, for any g € G, there is at most one
conjugacy class for each orbit. There are only finitely many orbits so we may
deduce there is only a finite set of conjugacy classes of finite subgroups of point
stabilisers of 2.

Let K be a finite subgroup of G, evaluating R[—, 2] at G/K gives a surjection

R|G/K,Q] = R[Q*] — R
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This implies that Q¥ is non-empty, so K stabilises a point and is a subgroup
of a point stabiliser and hence a member of one of the finite set of conjugacy
classes of finite subgroups of point stabilisers.

For the converse, if G has only finitely many conjugacy classes of finite
subgroups then we may take Q = [[, .y G/H where H runs over the set of
conjugacy class representatives X of finite subgroups of G. Now if K < G is a
finite subgroup

R[K,Q] = R[Q"] = € RI(G/H)]

HeX

But K = gHg™ ! for some H € X and g € G so gH € (G/H)X so the aug-
mentation map R[—, Q)] — R is a surjection when evaluated at any G/K and
hence is an epimorphism of contravariant modules. O

Proposition 2.34 [KMPNQ9, Lemma 3.2] Let G be O FPy, then a contravari-
ant module M(—) is O FP,, (n > 1) over R if and only if M(G/K) is of type
FP,, over R[W K] for all finite subgroups K < G.

Proof. Let M be a contravariant module of type Oz FP,, and P, —» M a
projective resolution, by a Bredon cohomology analogue of [Bro94, VIII4.3,4.5]
we may assume that all P; for ¢ < n are finitely generated free Bredon modules.
Evaluating this resolution at G/H for a finite subgroup H, and applying Corol-
lary we deduce each P;(G/H) is a finite direct product of projective FP,
W H-modules and hence finitely generated. So we have constructed a projective
resolution of M (G/K) which is finitely generated up to degree n.

For the converse we use induction on n. Let n = 0 and M a contravariant
module with M (G/K) of type FPy, ie. finitely generated, over R[WK]. We
construct a finitely generated free module F with an epimorphism F —» M,
thus showing that M is finitely generated and hence O FP( over R.

If He X and K = gHg ™! then the map K + gH induces a G-bijection be-
tween G/H and G/K with inverse H — g~ H. Hence M (G/H) and M(G/K)
are isomorphic via the maps M(K — g¢gH) and M(H — gK). Similarly
R|G/K,G/H] and R|G/H,G/H] are isomorphic via the maps R[K + gH,G/H]|
and R[H — ¢ 'K,G/H]. By assumption M(G/H) is finitely generated, say
with a generating set of size n, choose a morphism

D BRI~ G/H] — M(-)

which is an epimorphism when evaluated at G/H, such a morphism can always
be chosen by a Yoneda-type Lemma argument [MV03] p.9], which also tells us
that we have the following commutative diagram

" R|[G/H,G/H| —— M(G/H)

| |

@1 RIG/K,G/H| — M(G/K)
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where the left and right maps are bijections and the top map is an epimorphism,
thus the bottom map is also an epimorphism. Hence the map

EBR ,G/H] — M(-)

is an epimorphism when evaluated at any conjugate of H. Taking the direct
sum of these:
& RI-.G/H — M(-)
Hefin /|G
Where Fin /G denotes the set of conjugacy classes of finite subgroups, provides
a finitely generated free module with an epimorphism onto M (—).

Now suppose n > 0 and the claim is true for all k¥ < n. M(G/K) is a
R[W K]-module of type FP,, over R, so in particular it is FPg over R and finitely
generated. Let Ko — Py —» M be a short exact sequence in contravariant
modules with Py finitely generated free. By the argument of the first paragraph,
for any finite subgroup H, Po(G/H) is a R[W H]-module of type FP., over R
and by [Bie81l Proposition 1.4] Ko(G/H) is FP,,_; over R and by induction,
Ky is O FP,,_1 over R. O

Corollary 2.35 The following are equivalent for a group G

1. Gis O FP,, over R.

2. G is OxFPy and the Weyl groups WK are FP,, over R for all finite
subgroups K.

3. G is O FPy and the centralisers Cq K are FP,, over R for all finite sub-
groups K.

Proof. By the previous Proposition (1) and (2) are equivalent. To see the
equivalence of (2) and (3) consider the short exact sequence

00— K — NgK —WK —0

K is finite and hence FP,, so WK is FP,, over R if and only if No K is FP,,
over R. [Bie81l Proposition 2.7] K is finite, so C¢K is finite index in NgK
[Rob96l, 1.6.13] and so Cz K is FP,, over R if and only if N¢K is FP,, over R.
Combining the last two results gives WK is FP,, over R if and only if CqK is
FP,, over R. O]

In view of [Bie81l Proposition 2.1], that G is FP; over R if and only if its
finitely generated we have the following.

Corollary 2.36 G is Oz FP; over R if and only if it has finitely many conjugacy
classes of finite subgroups and all the Weyl groups of finite subgroups are finitely
generated.

Example 2.37. In [BS80], it’s shown that Abels’ group is FPy over Q but not
over Z. The Bestvina Brady groups also provide examples of groups which are
FP,, over some rings but not others [BB97]. By taking finite index extensions,
groups can be produced with the same property but that are not O FPy and
groups that are O FP,, over some rings but not over others [LNO3].
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2.8 FINITELY GENERATED PROJECTIVES AND DUALITY

This section grew out of an investigation into which groups were Oz FP over
some ring R with

G KA

We prove in Theorem that the only groups satisfying this property are
torsion-free, and hence torsion-free Poincaré duality groups over R. A number
of technical results concerning duality of Bredon modules are needed to show
this, they are all analogs of results for modules over group rings that can be
found in [Bie&1].

For M(—) a contravariant module, denote by M (—)® the dual module

M(?)P = Moro,. (M(+), R[#,7])

Similarly for A(—) a covariant module:

A(?)P = Moro, (A(#), RI?, #])

Example 2.38. If GG is an infinite group and R(—) is the covariant constant
functor on R then R(—)” =0,

R(—)P = Moro, (R(?), R[-,7])
= Moro (Ind??v R(?), R[-, 1)
~ Hompg (R, R[—, G/1])

Using Example and the adjointness of induction and restriction. Finally,
Hompg (R, R[—, G/1]) is the zero module since G is infinite.

Lemma 2.39 The dual functor takes projectives to projectives, and the double-
dual functor —PP : {Oz-modules} — {Oz-modules} is a natural isomorphism
when restricted to the subcategory of finitely generated projectives.

Proof. By the Yoneda-type Lemma [1.5)
R[~,G/H]” = Moro, (R[!,G/H], R[!,~]) = R[G/H, -]

The proof for covariant frees is identical.

For any module M(—), there is a map ¢ : M(—) — M(—)PP, given by
C(m)(f) = f(m). If M = R[—,G/H] then applying the Yoneda-type lemma
twice shows M(—)PP = M(-). The duality functor represents direct sums,
showing the double dual of a projective is also a projective.

Naturality follows from naturality of the map (. O

2.8.1 TECHNICAL RESULTS

We construct an R-module homomorphism

v:N(1) ®o, M(1)? — Moro, (M(£), N(#))
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The main result of this section will be Lemma [2.41] that v is an isomorphism
when M is finitely generated projective and Proposition that v induces an
isomorphism

Hp, (G, RIA 1) ®o, N(7) 2 Hp (G, N(7))

for all i < n when G is O FP,,.
Recall that elements of N (?) @0, M ()P are equivalence classes of elements

nu@en € @ N(G/H)@gMoro, (M(4), R[4, G/H])
G/HEOF
For any G/L € Oz and m € M(G/L) we define
v(ng ®rvm)(G/L): M(G/L) — N(G/L)
m— N (pu(G/L)(m)) (nm)
This makes sense because ¢y (G/L)(m) € R|G/L,G/H] and N is a con-

travariant module so
N(pu(G/L)(m)) : N(G/H) — N(G/L)

We must check that v(ng ®r ¢p) is a natural transformation, it’s well
defined including that it doesn’t depend on the choice of equivalence class in
N(?) ®0, Moro,. (M(+), R[+,17]), and that it is an R-module homomorphism.

v(ng ®r m) s a natural transformation:

Let @ : G/L1 — G/Ly be a G-map and G/L; € Or. We must check the
following diagram commutes:

v(na®ren)(G/L1)meN (r (G/L1)(m)) (nm)

M(G/Ly) N(G/Ly)

IVI(a)T : ) N(Q)T
v(na®rer)(G/L2)m—N(oa(G/L2)(m))(nm)

M(G/Ly) N(G/L2)

N(a)o (v(ng @r ¢u)(G/L2))(m) = N(a) o N (91 (G/Lz)(m)) (nu)
(or(G/L2)(m) o a)(ny)

((Rlo, G/H] 0 91 (G/Lz)) (m))(np)
(e (G/Ly) o M())(m)) (ns1)

(

Where the second equality is because N is a contravariant functor, the third
is because by definition g (G/Ls)(m)oa = (Rla, G/H] o o (G/L2)) (m), and
the fourth is because g is itself a natural transformation and hence following
diagram commutes:

M(G/Ly) _eu(G/Ly) R

G/Ly,G/H] (1)
JV[(a)T R[omG/H]T

M(G/L) 222 RiG )Ly, G/ H]
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v is well-defined: Firstly,

virng @ or) =v(ng @rem)

This is because

v(ng -r ®r ¢u) (G/L)(m) = N (¢u(G/L)(m)) (rnm)
=N (e (G/L)(m)) (nm)
= N (ren(G/L)(m)) (nm)
=v(ng @rpy)

Secondly, v doesn’t depend on the choice of equivalence class in:

N(1) ®o, Moro, (M(+),R[#,1])
Choose ny € N(G/H), opm € Moro, (M(+), R[#,G/M)), a: G/H — G/M a
G-map and G/H,G/M € Oz, we must show that

v(N@)(nn) @roar) = v (nr ©r (Moro, (M(#), Rlt.a)) ) (ean))
Let G/L € Og,

v(N(a)(nm) @r oar) (G/L)(m) = N (¢n(
= N(aopu(G/L)(m)) (nm)
= N (R[G/L,al(¢u(G/L1)(m))) (nm)
= N (Moro, (M(+), R[#,e]) (pr)(G/L1)(m)) (nw)
= v(nyg ®r Moro, (M(4), R, a]) (¢ar)) (G/L)(m)

G/L1)(m)) (N(a)(n#))

v is a map of R-modules: It’s clear that v is additive, and
virng @ o) =rv(ng @ o)

since N (—) being a module over R implies that N(¢n(G/L)(m)) is an R-module
homomorphism.

| Lemma 2.40 v is natural in N(—) in M(—).
Proof. We only prove naturality in N(—), the proof for M(—) is similar. Let

F(—) be morphism of contravariant modules N(—) — N’'(—), we must show
that the following diagram of R-modules commutes.

N(#) @0, Moro, (M(+), R, 1) —— Moro, (M (), N(+))
lF(7)®oFM0rof(M(%),R[ﬁ?]) \LMOYOF(M(%):F(%))
N'(#) @0, Moro, (M(4), R[#, 1)) — Moro, (M(+), N'(+))

Let ny ® oy € N(G/H) Qo, Morp, (M(+), R[+,G/H]) then moving about
the top right of the diagram yields

(Moro, (M(+), F(#)) o vn(ng ® ou))(G/L)(m)
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2.8 Finitely Generated Projectives and Duality

= F(G/L) o N(pu(G/L)(m))(nn)
and the bottom left yields

(vnr o F(7) @ Moro, (M(4), R4, 7)) (ne @ ¢u))(G/L)(m)
=vn/ (F(G/H)(ng) ® ou))(G/L)(m)
= N'(pu(G/L)(m))(F(G/H)(ngm))

That these two are equivalent is because F' is a natural transformation, so
the diagram below commutes.

e/ 2L NGy

N(WH(G/L)(m))T TN/(‘PH(G/L)("”))

NG/ H) DN ay )

The next lemma is an O module version of [Bie81l Proposition 3.1].

| Lemma 2.41 If M (—) is finitely generated projective then v is an isomorphism.

Proof. Consider first the case M(—) = R[—, G/H], then the map v becomes
v: N(7) ®o, Mor (R[£,G/H],R[#,1]) — Moro, (R[+,G/H],N(+))
But, using Lemmas and the left hand side collapses to
N(?) Rox Mor (R[%a G/H]v R[%a ?]) = N(?) R R[G/Ha 7]
~ N(G/H) (+)

Under these isomorphisms ng € N(G/H) maps to ng ® idg € N(?) ®r
R[G/H,?] and then to ng ® ¢ where ¢ is the unique natural transformation ¢
with @(G/H)(ldH) =idy.

The right hand side collapses to

Moro, (R[#,G/H],N(#)) = N(G/H) (f)

again by the Yoneda-type Lemma where ng maps to the unique natural
transformation ¢ with ¢(G/H)(id) = ng.

v(ng © ¢)(G/H)(idr) = N(p(G/H)(idn))(nm) = N(idm)(ng) = nu

Precomposing v with the isomorphism from () and postcomposing with the
isomorphism from (t) gives the identity map N(G/H) — N(G/H) and hence v
is an isomorphism.

The case for finitely generated free modules follows as all the necessary
functors commute with finite direct sums, and for projectives from naturality of
v proved in Lemma [2.40 O

The following result is an analog of [Bie8Il 5.2(a,c)].
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Lemma 2.42 1. If M(—) is finitely presented and N(—) is flat then v is an
isomorphism.

2. If M(—) is finitely generated and N(—) is projective then v is an isomor-
phism.

Proof. 1. 1If Fi(—) — Fy(—) — M(—) — 0 is an exact sequence with
F;(—) finitely generated free then then by the naturality of v and flat-
ness of N(—) we have the following commutative diagram with exact
rows (for brevity we write Mor for Morp,, ® for ®o,, and M*(?) for

Mor (M (+#), R[+,7]))-
0——=N(1) @ M*(}) —— N() ® F§ (1) —— N(1) @ F}'(?)

| | |

0 — Mor(M(+#), N(#)) — Mor(Fo(+#), N(#)) —= Mor(F1(#), N(#))
The right hand and middle vertical maps are isomorphisms by Lemma
the result follows from the 5-Lemma.

2. If F(?) is free then by Lemma there is an isomorphism

F(?) ®0, Mor(M(#), R[#,7]) = Mor(M(#), F(#))

Checking the definition of this isomorphism shows it’s induced by v. If
N(?) is projective and ¢ : N(?) — F(?) is a split injection then by
naturality of v, the following diagram commutes:

N() ®o, Mor(M(#), R[#,?]) — Mor(M(+), N(#))

| |

F(}) @0, Mor(M(#), R[#,7]) — Mor(M(#), F(#))

Since i is a split injection, the left hand map is an injection and top map
must be an injection. Consider the commutative diagram in the proof
of part 1, only Fo(—) is known to be projective so the middle vertical
map is an isomorphism. Since N(—) is projective the left and right hand
vertical maps are monomorphisms and the Four Lemma completes the
proof, implying that the left hand vertical map is an isomorphism.

O

We need the following quick technical lemma.

Lemma 2.43 If P,(—) is any chain complex of contravariant modules and N (—)
is any contravariant module, the following morphism is both well defined and
natural in P,(—) and N(—).
€ N(?) @0, H'P.(HP — H (N(?) @0, P.(1)P)
€ N(7) ®o, H'(Mor(Pi(£), R[#,7]) = H'(N(?) ®0, Mor(Pi(+), R[£,7]))
nu ® [ou] = [ng ® enl

Where HiP,(?)P : G/H — HP,(G/H)P.
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2.8 Finitely Generated Projectives and Duality

Proof. If ¢y is a cocycle, ngy ® ¢g is also a cocycle and similarly if g is a
coboundary then ny ® pg is a coboundary.
If o« : G/L — G/H is a G-map then by definition o.[pn| = [awppm] and

(o ny @ [on] —ng ® axlpn]) = (" ny ® [pu] — ng @ [awpn))
=la"ng @ g —ng @ a.pH|
)

Finally naturality follows because the the functors H*(—) and Morp,.(—,?)
are natural, and so is the process of taking tensor products. O

Since v is natural (Lemma [2.40)), if P.(—) is a projective resolution of R(—)
by contravariant modules then v induces chain homomorphisms

N(?) @05 Pu(1)? — Moro, (P.(#), N(#))
Which in turn induce maps on cohomology
H'(N(?) @0, P(1)P) — Hp (G, N(#))
Precomposing this with & gives a map
v': N(7) @0, Hp, (G, R[#, 1)) — Hp, (G, N(4))

Proposition 2.44 If G is O FP,, over R and N(—) is projective then v is an
isomorphism for all ¢ < n.

Proof. Choose a projective resolution P,(—) —» R(—), finitely generated up
to dimension n and write K;(—) for the i*" syzygy of P.(—). Since N(-—) is
projective it is also flat and we have the following commutative diagram with
exact rows, where we omit the o, on ®, Mor, and H'; and also write M*(?) for

Mor(M(#), R[£, 7).

N @ Pry(f) ———= N @ K (1) —= N(#) @ H'(G, R[£,7]) =0
Mor(P;—1(+), N(+)) = Mor(K;—1(+), N(#)) —— H(G,N(#)) —=0
Since G is O FP,,, K;_1(—) and P,_1(—) are finitely generated, thus by Lemma
the middle and left hand vertical maps are isomorphisms. The 5-Lemma

completes the proof. O

The following result is an analog of [Bie&1l 9.1].

Proposition 2.45 If G is Oz FP over R, with Oz cdr G = n, and N(—) is any
contravariant module then there is a natural isomorphism:

V" N(1) ®o, Hp, (G, RI+.7]) = Hp, (G, N(#))
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Proof. Let
0 — K(—) — F(-) — N(—)—0

be a short exact sequence of contravariant modules over R with F' free. By the
naturality of v™ we have the following commutative diagram with exact rows,
we omit the Or decorations on ® and H* for brevity.

K(7)® H"(G,R[-. 7)) = F(1) ® H"(G, R[-.7]) = N(7) @ H"(G, R[-, 7]) = 0

| | |

H"(G, K(-)) H"(G, F(-)) H™(G,N(=)) —=0

The middle vertical map is an isomorphism by Proposition thus by the
Four Lemma, the right hand vertical map is an epimorphism. Since there are no
restrictions on N(—), we conclude that the left hand vertical map is an epimor-
phism and by the Five Lemma that the right hand map is an isomorphism. [

2.8.2 THE WRONG NOTION OF DUALITY

Theorem 2.46 If G is an arbitrary group Ox FP group with Oz cdr G = n

and
R(?) ifi=n
0 else.

HYy (GO R 7) = {

then G is torsion-free.

Proof. Choose a length n finite type contravariant resolution P,(—) of R(—),
then by Lemma 1) and the assumption on Hg_(G, R[+,7]), PP(-) is a
covariant resolution by finitely generated projectives of R(—):

0— PP(—) 2 pP(—) 2y . 2 pP(L) s HY (G, R4, 7)) 2 R(?) — 0

In particular, G has O%" cdg G < n, so by Theorem 2.15] G is R-torsion-free
and cdr G < n. Choose a length n finite type projective RG-resolution @, of
R, by Proposition 2.13] and Example

(Ind{”" Q.)(—) — R(~)

is a projective covariant resolution.

By the comparison theorem [Wei94, 2.2.6], the two projective covariant reso-
lutions of R(—) are chain homotopy equivalent. Any additive functor preserves
chain homotopy equivalences (a chain homotopy equivalence is defined purely
with addition and function composition, which are preserved), so applying the
dual functor to both complexes gives a chain homotopy equivalence between

0— R(—)P =0 — (Ind’* Qo)(—)” — - — (Ind{* Q)(—)P
and

0—R(—)P=20— P,(-)PP — P 1(—)PP — - — Py(—)PP
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2.9 Questions

(That R(—)P = 0 is just Example [2.38). We know both complexes above are
left exact, since More . is. Lemma gives the commutative diagram below.

DD DD

0—— Pu(0)PP —= - ——= P ()PP —= Po(-)

- S

0 Po(-) Py(=) ——— R(-)

R
R

The lower complex, P.(—), satisfies Hy(P:x(—)) = R(—) and H;(P.(—)) =0
for all i # 0. Thus the same is true for the top complex, and also the complex

Ind?;‘o ' Q.(—)P, since this is homotopy equivalent to it. In particular, there is
an epimorphism of contravariant modules,

d{”" Q,(—)” — R(-)

The left hand side simplifies, using the adjointness of induction and restriction:
md7" Qu(=)” = Moro, (Y™ Qu, R[?, #]) = Hompe(Q, R[?, G/1])

Since Hompa(Q, R[?,G/1]) = 0 if H # 1, this module cannot surject onto
R(—) unless G is torsion-free. O

2.9 QUESTIONS
Collected here are questions related to Bredon modules from this section.

Question Is there a nice characterisation of the condition covariant-
Oz FP,, over R, for groups which are not R-torsion free?

Question What does the condition Orcdr G = 1 represent? Is it
equivalent to Orcdz G =17

Question Do there exist groups of type Oz FP, with cdg G # Ox cdg G7
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3 MACKEY FUNCTORS

Throughout this section F will denote the family of finite subgroups. The
definition of Mackey functors for subfamilies of F is identical, but some changes
are needed for larger families such as that of virtually cyclic subgroups, see for
example [Degl3bl §6.2].

There are many constructions of Mackey functors, we use the construction
coming from modules over a category, as we’ve already built up a lot of theory
concerning these in Section [l Two other constructions are mentioned in Re-
marks [3.9] and We begin by building a small category M then, using
the language of Section [1}, Mackey functors will be contravariant modules over
M. Fix a commutative ring R. As in Oz, the objects of Mz are the transi-
tive G-sets with stabilisers in F, the morphism set however is much larger. A
basic morphism from G/H to G/K, where H and K are finite subgroups, is an
equivalence class of diagrams of the form

G/H <~ G/L -2 G/K

Where the maps are G-maps, and L is a finite subgroup of G. This basic
morphism is equivalent to

a/H - a/r LGk

if there is a bijective G-map o : G/L — G/L', fitting into the commutative
diagram below:
G/L
e
G/S o
N

[e3%

G/K

NS

G/L

Form the free abelian monoid on these basic morphisms, and complete this
free abelian monoid to a group, denoted [G/H,G/K]|m,. This is the set of
morphisms in Mz from G/H to G/K.

Remark 3.1. When building the Mackey category, we could instead have
started with equivalence classes of diagrams

G/H + A - G/K

Where A is any finitely generated G-set with finite stabilisers and the maps
are G-maps. This can be shown to be the free abelian monoid on the basic
morphisms [TW95, Proposition 2.2]. Because of this alternative construction,
we will pass freely between writing

(G/H + G/L — G/K) + (G/H + G/L' — G/K)

and

(G/H —a/L][e/ - G/K)
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To complete the description of Mz, we must describe composition of mor-
phisms. It’s sufficient to describe composition of basic morphisms, and then use
distributivity to extend this to all morphisms. If

G/H «+ G/L — G/K

and
G/K«+ G/S—G/Q

are two basic morphisms then their composition is the pullback of the diagram
below in the category of G-sets

G/L G/S

P NN
G/H G/K G/Q

Before we describe this pullback explicitly, some notation:

Remark 3.2. If H is a finite subgroup of G, we’ll use the notation H9 to mean
the conjugate g~ 'Hg. Thus there is always a G-map

oy G/H — G/HY
H— g(g~'Hg)

and a G-map

ag1:G/HY — G/H
(9 'Hg)— g 'H

Lemma 3.3 [MPNO06, §3] Composition of morphisms in Mx.
The diagram below is a pullback in the category of G-sets.

G/(L9nsI= )

/41 “m(g’)\A
> G/L G/
rEL\K /S T e
U G/kT

S

Notice that the subgroup L9 N 597" is both a subgroup of K via the maps on
the left and subconjugated to K via the map a,, which is the composition of
the maps on the right.

Remark 3.4. The pullback of Lemma [3.3] could be written as:

G/ (L9 N sY)

A/zg* a(g/)x
L - G/
Oég /K ag/

>, | a

z€LI\K/S9'

S

G



Lemma 3.5 Standard form for morphisms in M. [TW95 Lemma 2.1]
Any basic morphism is equivalent to one in the standard form:

G/
N
G/K G/S

Recall that two such basic morphisms are equivalent if there is a commutative
diagram of the form:

P
G/x 'Lz

The commutativity of the left hand triangle insures that € K, and that of
the right hand diagram gives ay = g’ © 0z, or more consisely g5 = z¢’S. This
means KgS = K¢'S and x = ¢gS(¢’') "'NK = gSg~'NK. Thus a basic morphism
is determined by both an element of K\G/S and a subgroup L, subconjugate
to K, unique up to conjugation by an element x € ¢Sg~!' N K. In summary,

[G/K, G/S]M}' = @ @ Lp.g (1)
geEK\G/S L<gSg~'nK
Up to gSg~! N K-conjugacy

Example 3.6. If S = 1 then (1)) becomes

G/K,G/Nmy = P Zy = ZIK\G]

geK\G

Remark 3.7. The category M x has property (A) by construction, but it does
not have property (EI) (See the beginning of Section [lf and Remark for
the definitions of these properties). For example, given any non-trivial finite
subgroup H of G, the endomorphism

e= (G/H FNyEyl iR G/H)
is not an isomorphism. If

m = (G/H & GIR 2y G/H)
is some other basic morphism then their composition is

moe= Y (G/H<a—1G/1 MG/H)

z€H/K

So it’s clear that composing e with any element of [G/H,G/H|, can never
produce the identity morphism on G/H. The structure of the endomorphisms
and automorphisms of objects in H # is explained in Remarks and
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As described in Section [1} a covariant (resp. contravariant) module over the
Mackey category, or Mz-module, is a covariant functor (resp. contravariant
functor) from Mx to R-Mod. Following [MPNO6], we will mostly consider
contravariant Mackey functors. Indeed from here on, whenever we write M ~-
module, we mean contravariant M r-module. Following the notation of Section
R[—,G/H] pm, denotes the free M z-module with

R[_vG/H]MF(G/K) = R[G/KvG/H]MJ: = R®z [G/KvG/H]M}‘

Remark 3.8. The category of contravariant M r-modules is isomorphic
to the category of covariant M r-modules.

Let ¢ : My — Mx°? denote the contravariant functor mapping G/H to
itself and

¢(:(G/H+«+ G/L—-G/K)— (G/K + G/L - G/H)
It should be clear that ( o ( =ida,.. Let ¢, be the map

s : {Covariant M z-modules} — {Contravariant M z-modules}
M(=)— Mo(¢(—)

Then (, is an isomorphism of categories, hence necessarily additive and exact.
One can check that (.R[G/H, —|m, = R[—,G/H]|pm,, so (. preserves projec-
tives also. Because of this, there is no point considering finiteness conditions for
both covariant and contravariant M z-modules, a covariant M z-module M (—)
has cohomological dimension 7 if and only if the contravariant M z-module
¢«M(—) has cohomological dimension n and similarly for the FP,, conditions.

Remark 3.9. Green’s alternative description of the Mackey category.

There is an alternative description of Mackey modules, due to Green [Gre71],
which we include here in full because when we later study cohomological Mackey
functors in Section 4] we will need some of the language.

Green defined a Mackey functor M (—) as a mapping,
M(-):{G/H : H a finite subgroup of G} - R-Mod
with morphisms for any finite subgroups K < H of G,

M(IE): M(G/K) — M(G/H)
M(RE): M(G/H) - M(G/K)

1

M(cy) : M(G/H) — M(G/HY )

Called induction, restriction and conjugation respectively. Induction is some-
times also called transfer. In the literature, M (1), M(RI) and M(c,) are
often written as just I, RE and ¢, - omitting the M entirely. We choose
to use different notation so that we can identify I, R and ¢, with specific
morphisms in Mz (see the end of this remark).

This mapping M (—) must satisfy the following axioms,

(0) M(IH), M(RE) and M(cy,) are the identity morphism for all h € H.
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(1) M(RY)o M(RE) = M(RY), where J < K < H are finite subgroups of
G.

(2) M(IH)o M(IK)= M(I%), where J < K < H are finite subgroups of G.

(3) M(cq) o M(cn) = M(cgp) for all g,h € G.

(4) M(Rﬁg,i Yo M(cy) = M(cy)o M(RE), where K < H are finite subgroups
and g € G.

(5) M(IHg,ll) o M(cy) = M(cy) o M(I}), where K < H are finite subgroups
and g € G.

(6) M(RY) o M(If) = Y po i MUI 1) 0 M(es) o M(RE. ), where
J, K < H are finite subgroups of G.

Axiom (6) is often called the Mackey axiom. Converting between this descrip-
tion and our previous description is done by rewriting induction, restriction and
conjugation in terms of morphisms of M.
M(If) +— M(G/H <+~ G/K =% G/K)
M(Rf) +— M(G/H <+ G/H =5 G/K)
M(cy) «— M(G/HY " & G/HY 2% G/H)
Because of the above, we make the following definitions
Iff = (G/H <+ G/K =5 G/K)
Ri = (G/K £~ G/K =% G/H)
¢y = (G/H " & G/HY 2% G/H)
It is possible to write any morphism in Mz as a composition of the three

morphisms above.

One can check that Green’s axioms all follow from the description of the
composition of morphisms in Mz as pullbacks (Lemma , and vice versa.
Complete proofs of the equivalence of this definition with our previous one can
be found in [TW95| §2].

Remark 3.10. Dress’s alternative description of the Mackey category

There is another alternative description of Mackey functors, due to Dress
[Dre73], which describes a Mackey functor as a pair of functors M., M* : O —
R-Mod, where M, is covariant and M™ is contravariant. We won’t describe
this here as we don’t require it, a full description including a proof of equivalence
with the previous two definitions can be found in [TW95| §2].

3.1 FREE MODULES
In this section we describe the structure of Aut(G/H) and End(G/H), and
discuss free modules in the category of M z-modules.

Remark 3.11. Structure of Aut(G/H).

As mentioned in Remark M doesn’t have property (EI) - End(G/H)
is not equal to Aut(G/H). Using the standard form of Lemma the auto-
morphisms of an object are the diagrams of the form

= (G/H &~ G/H 2% G/H)
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Where g is unique up to multiplication by an element of H. Every g € WH
uniquely determines a G-map «, : G/H — G/H and every G-map comes from
such a g. Finally, since agoap, = apg, we determine that Aut(G/H) = Z[W H°P].
This is identicial to the situation over the orbit category, where Aute, (G/H) =
Z[W H°P| also. Thus, as with Oz-modules, if M(—) is a Mackey functor, then
M(G/H) is a right R[W H°P] module, equivalently a left R[W H]-module.

Lemma 3.12 As a left R[WgS] module, R[G/S,G/K]|m, is an R[WgS]-

permutation module with finite stabilisers. In addition, R[G/1,G/K]rm, is
FP, over RG.

Proof. The left action of w € WS on [G/S,G/K]am, is the action given by
pre-composing any basic morphism G/S e /L e /K with the morphism
G/S L G/S % G/S to yield the morphism

G/SEG/L™ G/K

To show this we calculate the pullback

en:
ld/ \aw
- q/s G/L
1d/ aw\ /ld \9
a/s G/S G/K

Under the identification , w maps Ry 4 onto Ry, .4, so the stabiliser of this
action is the stabiliser of the action of R[W¢S]| on R[S\G/K], which is finite.
In particular R[G/S,G/K|m, is an R[WgS]-permutation module with finite
stabilisers. O

Remark 3.13. Unfortunately, R[G/S,G/K]m is not even WS finitely gen-
erated in general. For an example of this choose a group G with a finite subgroup
K such that K\G has infinitely many Wg K-orbits (for a specific example see

Example [2.11]). Then, by Example
R[G/K,G/1]mz = RIK\G]
Which is not finitely generated as a left R[Wg K] module.

Remark 3.14. Structure of End(G/H).
The structure of End(G/H) is more complex than that of Aut(G/H), a basic
morphism in End(G/H) is determined by a morphism in standard form

ery = (G/H &-G/L 2% G/H)

where L is some subgroup of G. As such we can filter End(G/H) via the poset
F /G of conjugacy classes of finite subgroups of G. If L is a finite subgroup of
G then we write End(G/H)y, for the basic morphisms ey, 4 for all g € G. Note
that in particular, End(G/H )y = Aut(G/H). The abelian group End(G/H)p,

-57-



3.2 Restriction, Induction and Coinduction

is not closed under self-composition, but it is closed under pre-composition by
elements of Aut(G/H), since

€L,g © Gy = €L,wg

Where a,, = ep, as described in Remark :3.11} Thus REnd(G/H)y, is a right
R Aut(G/H) module, equivalently a left R[W H] module. In summary, there is
an R[W H]-module isomorphism

REnd(G/H)= @) REnd(G/H)L
LeF/G

Where End(G/H)y = Aut(G/H).

Remark 3.15. REnd(G/H) is not in general R[W H] finitely generated.
Using , we see that

REHd(G/H)lg @ RLQ
H\G/H

With left action of w € WgH taking g — wg. In other words, REnd(G/H); =
R[H\G/H] with the canonical action of WgH. This is not in general finitely
generated - take for example G = D, the infinite dihedral group generated
by the involutions a and b, and H = (a). Then WgH is the trivial group but
H\G/H is an infinite set so R[H\G/H] is not a finitely generated R-module.

3.2 RESTRICTION, INDUCTION AND COINDUCTION

We specialise the constructions of Section to the Mackey category. As well

—

as the functors End(G/H) — Mz, there are two useful functors O — Mz,
one covariant and the other contravariant: Let o : O — M be the covariant
functor sending
o(G/H)=G/H
o(G/H S G/K) = (G/H L G/H S G/K)
and 7 : Or — Mz be the contravariant functor

7(G/H)=G/H

7(G/HS G/K) = (G/K & G/H S G/H)

Note that 7 = ( o 0. Thus ¢ induces restriction, induction, and coinduction
between contravariant O z-modules and (contravariant) M z-modules and 7 in-
duces restriction, induction, and coinduction between covariant Oz-modules
and (contravariant) M r-modules.

Example 3.16. If R(—) is the constant covariant Oz-module then, recalling

Example that R(—) = Ind??v R,

Ind, R(—) = Ind” R = R[—,G/1|m, @re R
Since R[G/K,G/1|m, = R[K\G] by Example this is the constant functor
on R.
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3.8 Homology and Co-homology

Lemma 3.17 Structure of Res, R[G/H, —|m
There is an Oz-module isomorphism:

[MPNO6, Proposition 3.6]

F

Res, R[G/H, ~|my = @D R®w, 1 RIG/L, o,
L<H

Example 3.18. If R(—) is the constant contravariant Orz-module then, using

Lemma [3:17]
Ind, R(G/H) = R[G/H,o(+)|mr ®or R(+)

=~ P R@wy1 RIG/L, o, ®o, R(+)
L<H

~@Pr

L<H
Checking the morphisms as well, one sees that
Ind, R(~) & BY(~)

Where B%(—) is the Burnside functor defined at the beginning of the next
section.

As well as the properties of induction and restriction inherited from Propo-
sition we have the following crucial result.

Proposition 3.19 [MPNO06, Theorem 3.8] Although induction with ¢ is not
exact in general, induction with o takes contravariant resolutions of R(—) by
projective O z-modules to resolutions of B%(—) by projective M r-modules.

3.3 HomoLoGY AND CO-HOMOLOGY
As in Section we have functors Ext},, and Tor™7” . Furthermore, we define
Hy,  and H;"'F for any Mz-module A(—) as
Hjy, (G, A(#)) = Extiy, (BY(#), A(4))

HM7 (G, A(#)) = Tor2' 7 (B (4), A(#))

Where B%(—) is the Burnside functor BY(—) which, by an abuse of notation
since G/G is not an object of Mz, can be defined as

B€(=) = R[~,G/G)m;

Upon evaluation at G/K for some finite K,
BY(G/K) = D RL
L<K

Up to K-conjugacy

This is not so dissimilar from the case of the orbit category O where, using a
similar abuse of notation, one could view R(—) as R[—, G/G|o,. Note that the
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constant functor R(—) used with Oz-modules is not an M z-module. Specialis-
ing the definitions of Section[I.5] G is said to be Mz FP,, if there is a projective
resolution of BY(—), finitely generated up to degree n, and G has MrcdG < n
if there is a length n projective resolution of BY(—) by M z-modules.

A corollary of Proposition [3.19|is the following.

Corollary 3.20 [MPN06, Theorem 3.8]

Hjy, (G, M(#)) = Hp . (G, Reso M(4))

3.4 COHOMOLOGICAL DIMENSION

There are no original results in the this Section, but for completeness we provide
a brief overview. In [MPNOG], it is proven that ved G = Mz cd G whenever G
is virtually torsion free, and in [Degl3b, 6.2.25] it is proved that whenever
G has a bound on the orders of its finite subgroups and F-cd G < oo then
F-cdG = MgrcdG.

Question 3.21. Does the condition Mz cd G < oo imply that Orcd G < oo,
or that F-cdG = Mz cd G?
3.5 FP, CONDITIONS

As far as we are aware, there are no results in the literature on the conditions
MxzFP,. We make some small observations about these conditions in this
section.

In the lemmas below, F/G denotes the poset of conjugacy classes of finite
subgroups of GG, ordered by subconjugation, so H < K if H is subconjugate to
K.

|Lemma 3.22 G is Mz FPy if and only if /G is finite.

The proof needs an easy Lemma.
| Lemma 3.23 F/G has is finite if and only if /G has a finite cofinal subset.
Proof. One direction is obvious, for the other direction let M be a finite cofinal
subset of F/G. Then every element K € M has finitely many subconjugate

subgroups, and since every finite subgroup of G is subconjugate to some K € M
there can only be finitely many finite subgroups up to conjugation. O

Proof of Lemma [3:22] Let f be an M r-morphism
[ R[_v G/K]M}' — BG(_) = R[_a G/G]M}'
Firstly, we claim that the element m of R[G/S,G/G|m, given by
m=(G/S ¢ G/S — G/G)

cannot be in the image of f(G/S) unless S is subconjugate to K. Assume for a
contradiction that S is not subconjugate to K and assume m is in the image of
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3.5 FP,, Conditions

f(G/S). Thus m = f(G/S)e for some ¢ € [G/S,G/K]|am,. Thinking of f as a
natural transformation gives the commutative diagram below

RIG/S,G/K]p, — L R

s

R[G/K,G/K]|m»

-

M) RIG/K, GG m,

Where
m = f(G/S)p
= f(G/S) o p* id[G/K,G/K]M}.
= (" 0 f(G/K))(dig/K.6/K)u )
Let f(G/K)(idiG/k,G/K|m,) = 2_;TiTi, where r; € R and the z; are basic
morphisms in R[G/K,G/G|pm,. Similarly, let ¢ = 3, s;y; for s; € R and

where the y; are basic morphisms in R[G/S, G/K]m,. By assumption we have
that

m =" E T
i
i J
= (risj)zioy;
,J

There must exist some i and j for which z; o y; is a morphism which, when
written as a sum of basic morphisms, has one component some multiple of m.
We calculate x; o y; for this ¢ and j. Write z; and y; in their standard forms as
below,

;= (G/K  G/Li — G/G)

y; = (G/S +— GJ; — G/K)

Their composition is

G/ X}
PN
Jiioyj:z G/J] G/L,
k e N PN
G/S G/K G/G

Where X, is some finite subgroup of G which is subconjugate to both L; and
Jj. But such a finite subgroup cannot be conjugate to S, as L; is subconjugate
to K and K is not subconjugate to S by assumption. This contradicts our
earlier assertion that x; oy; when written as a sum of basic morphisms, has one
component some multiple of m. Thus, for m to be in the image of f(G/S), S
must be subconjugate to K.
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3.5 FP,, Conditions

Now, if G is M zFP, then B%(—) admits an epimorphism from some finitely
generated free
D RI-, G/ Kijpr — B (-)
iel
As this set [ is finite, the argument above implies that all the finite subgroups

of G are subconjugate to one of a finite collection of finite subgroups. Thus
there is a finite cofinal subset of /G, and by Lemma F/G is finite.

For the converse assume that F/G is finite and let M C F/G denote a
finite cofinal subset of F/G (we could just take M = F/G), we claim the
augmentation map

e: @ R[-,G/K|m, — BY(-)
KeM

is an epimorphism. Every basic morphism in BY(S) = R[G/S, G/G]m, can be
written as

m=(G/S <~ G/L =5 G/G)
Let K € M be a finite subgroup with L < K, then m is the image of
(G/S <+~ G/L %% G/K) € R|G/S,G/K]m;
under the map R[G/S,G/K]|m, — BE(G/S). O

| Lemma 3.24 If G is Mz FP,, then G is FP,,.

Proof. Let P.(—) be a projective resolution of B%(—) by Mx-modules. Then
evaluating at G/1 gives a resolution of R by RG modules of type FP, by Lemma
A dimension shifting argument, as in the last paragraph of Proposition
[2:34] completes the proof. O

|Lemma 3.25 If G is O FP,, then G is M xFP,,.

Proof. We use the Bieri-Eckmann criterion (Theorem [1.28)). Let My (—) be a
directed system of M z-modules such that lin M, A(—) = 0. Then by Corollary

B.20}
lim HY, (G, My(=)) = lim Hp (G, Resy My(—))

Since G is assumed Ox FP,, the right hand side is 0 by Theorem and by
another application of the same theorem G is Mz FP,,. O

Recal that G has OxFPj, if and only if G has finitely many conjugacy classes
of finite subgroups (Proposition [2.33)), thus the conditions M zFPy and OrFP,
are equivalent. We have the chain of implications

OrFP, = MsFP, = (FP, + OzFP)

Except for the case n = 0 we do not know if the arrows are reversible, although
examples in [LNO3| show that FP,, + OxFPy & Ox FP, in general so at least
one of the arrows must be irreversible.

Question 3.26. Is there a nice characterisation of the condition Mz FP,?
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3.6 Questions

3.6 (QUESTIONS
Collected here are questions related to Mackey functors discussed in this section.

Question Does the condition Mz cd G < oo imply that Orcd G < o,
or that F-cd G = Mz cd G?

Question [3.26] Is there a nice characterisation of the condition M FP,?
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4  COHOMOLOGICAL MACKEY FUNCTORS

A Mackey functor is called cohomological if, using the language of Remark
it satifies
M(If) o M(RY) = |H : K|

for all finite subgroups K < H of G. Recall from Remark [3.9] that to describe
a Mackey functor M(—) it is sufficient to describe it on objects and on the
induction, restriction and conjugation morphisms in Mz (I, Rl and cg), We
use this in the examples below.

Example 4.1. Group cohomology.
The group cohomology functor is Mackey, more precisely the functor

H"(—,R): G/H —» H"(H,R)

Where H"(—, R)(c,) is induced by conjugation, H"(—, R)(R%) is the usual re-
striction map and H"(—, R)(I) is the transfer (see for example [Bro94l §111.9]).
That the group cohomology functor satisfies (M) is [Bro94l I11.9.5(ii)]. In fact,
cohomological Mackey functors get their name from the group cohomology func-
tors.

Example 4.2. Fixed point and fixed quotient functors.
If M is a ZG-module then we write M~ for the fixed point functor

M~ :G/H+— MY

Where M# = Hompgpg (R, M). For any finite subgroups K < H of G, M~ (R)
is the inclusion, M~ (IH) is the trace m — > ner e m, and M~ (cg) is the
map m — gm.

We write M_ for the fixed quotient functor

M_ G/Hl—)MH

Where My = R ®py M. For any finite subgroups K < H of G, M_(R%) is
the trace 1@ m — 1 ® 3,y i i, M_(I}f}) is the inclusion, and M_(c,) is
the map m — gm.

Lemma 4.3 [MPNQG, Lemma 4.2][TW90l 6.1] There are Mackey functor iso-
morphisms for any RG-module M,

Colnd N M = M~

Indply M= M_

Where induction and coinduction are with the functor RG — M given by
composition of the usual inclusion functor RG — Oz and the functor ¢ : O —
Mz of Section [3.2] Thus there are also adjoint isomorphisms, for any Mackey
functor N(—).

Hompa(N(G/1), M) = Hompa,- (N, M ™)

Hompg(M,N(G/1)) =2 Homu,. (M ™, N)

As observed by Thévenaz and Webb in [TW95 §16], in [Yos83] Yoshida
proves that the category of cohomological Mackey modules is isomorphic to
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the category of modules over the Hecke category Hz, which we shall describe
below. Yoshida concentrates mainly on finite groups but observes in [Yos83] §5,
Theorem 4.3'] that this isomorphism will hold for Mz modules, where F is any
subfamily of the family of finite groups.

The Hecke category Hr, or HxG if we want to emphasize the group, has
for objects the transitive G-sets with finite stabilisers G/H. The morphisms
between the objects G/H and G/K are exactly the RG module homomor-
phisms, Hompg(R[G/H], R|G/K]). We will use the notation of Section I} writ-
ing R|G/H,G/K]y, to denote the morphisms in Hx between G/H and G/K.
Modules over Hr are also defined as in Section as contravariant functors
Hr — R-Mod. As discussed in Section the free Hr-modules are direct
sums of modules of the form R[—, G/H]3.

Remark 4.4. The usual definition of the Hecke category, for example in [Yos83]
and [Tam8&9], takes the objects of Hz to be the permutation modules R[G/H]
for H finite and the same morphism sets. This is equivalent to our definition
above. We choose to take the G-sets G/H as objects so that our notation for
modules over H r coincides with that for modules over O and M .

Remark 4.5. In [Degl3a] and [Degl3b|, Degrijse considers categories called
Mack G and coMackzG. In the notation used here MackrG is the category
of M z-modules and coMackrG is the subcategory of cohomological Mackey
functors, he doesn’t study modules over Hx explicitly.

Thévenaz and Webb also describe a map 7 : Mz — Hx (they call this
map «), taking objects G/H in Mg to their associated permutation modules
R[G/H] and morphisms which they describe as follows, for any K < H,

e 7(RI) is the natural projection map R[G/K] — R[G/H)].

o 7(I) takes gH Yner/x 9hK.

o 7(c,) takes gH > grH®.

If M(—) is an Hx module then it is straightforward to check that M o 7(—)
is a Mz-module, see for example [Tam89, p.809] for a proof. Moreover, every
cohomological Mackey functor M (—) : Mz — R-Mod factors through the map

7, this is the main result in [Yos83|, see also [Web00, §7]. Thus we may pass
freely between cohomological Mackey functors and modules over H r.

Lemma 4.6 [Yos83| Lemma 3.1'] There is an isomorphism, for any finite sub-
groups H and K of G

R[H\G/K] = R[G/H,G/K]u,
Under this identification, morphism composition is given by

(HeK)- (KyL)= Y |(HzKNzLy 'K)/K|(HzL)
z€H\G/L
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4.1  Induction

Remark 4.7. The identification in the lemma above relates to the usual defin-
tion of R[G/H,G/K|y, as Hompge(R[G/H], R[G/H]) with the isomorphism

o~

¢ : RIH\G /K] — Hompgq(R[G/H], R[G/K])

HxK — | gH — Z gux K
ueH/(HNxKxz~1)

Notice that v satisfies
([HaK] - [KzL]) = ¢([KzL]) o p([HzK])

Remark 4.8. Explicit Description of 7. Using the identification of Lemma
for any K < H, we can describe 7 as follows.

e m(RIL) = KH, since according to Lemma KH corresponds to the
morphism gK — gH, which is exactly Thévenaz and Webb’s description
of m(RI).

e 7(I1) = HK, as according to Lemma HK corresponds to the mor-
phism gH — > .y /K uwK, which is Thévenaz and Webb’s description of
m(I§).

e 7(c,) = HxH?®, similarly to the above because HxH? corresponds to the
morphism gH — gxH?”.

Lemma 4.9 Free and projective H r-modules.[TW95, Theorem 16.5(ii)]

The free Hr-modules are exactly the fixed point functors of permutation
modules with finite stabilisers, and the projective H z-modules are exactly the
fixed point functors of direct summands of permutation modules with finite
stabilisers.

4.1 INDUCTION

In this Section we specialise the results of Section [I.3] to the category of coho-
mological Mackey functors. The main result of this Section will be Proposition
that we may induce projective resolutions of Oz-modules to projective
resolutions of H z-modules.

Let 7 denote the functor m : My — Hx discussed at the beginning of
this Section, and recall from Section that ¢ : Or — Mz is the covariant
inclusion functor, taking a G-map

a,:G/H — G/K
H— K

to the element

oo, = (G/H <+ G/H =% G/K)
=cz0 RHm

We need three lemmas leading us to Proposition 4.14
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4.1  Induction

Lemma 4.10 There is an Or-module isomorphism,

Resros RIG/L, =, = Hompr (R, R[G/1,—]o,)

Proof. Let H be a finite subgroup, evaluating the left hand side at G/H yields
R[G/L,G/H|3, while evaluating the right hand side at G/H yields

Homp, (R, R[G/H]) = Hompe(RG @ g1, R, R|G/H])
~ Hompe(R[G/L], RIG/H))
~ R[G/L,G/H),

Where the first isomorphism is [Bro94) p.63 (3.3)]. If o, : G/H — G/K is the
G-map H — zK then looking at the left hand side

ReSnoo RIG/Ly—Jry (00) = RIG/H, ~Jpup(cs o RE™ )
= RIG/H, ~Jur(c) o RIG/H, ~lur (RE )
But R[G/H, ]y, (Rﬁz_l) is post-composition with the G-map
o :G/H — G/Kf1
and R[G/H, —]#-(c:) is post-composition with the G-map
Oy G/K’F1 - G/K
In summary, Resyos R[G/L, —]3 () is the map

Hom pa(RIG/ L], RIG/H]) — Homag(RIG/L), RIG/K])
frazof

Since this is Hompgy (R, R[G/1, —]|o)(ay) also, the left and right hand sides
agree on morphisms. O

Lemma 4.11 Let N(—) be an arbitrary projective contravariant Oz-module
and H a finite subgroup of G. Then there is an isomorphim:

N(+4) ®0 Resroo R|G/H, |3, = Hompy (R, N(G/1))

Before we prove this we need the following.

Lemma 4.12 For any finite subgroup H of G, the module Ind$% © Ind%% R(—)
is of type Ox FP .

Proof. Unfortunately we can’t use Proposition as G is not assumed to
be of type O FPy. Using Lemma [2.8] and the fact that R is FP as a ZH
module, Ind%g R is of type FPo, over ZG. Choose a finite type free resolution
F, of nd5% R by ZG modules, then Indgg @ F.(-) is clearly a complex of
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4.1  Induction

finitely generated free O G modules. By Proposition ii) Indgg is exact,

SO Indgg F,(—) is a resolution of Indgg @ Ind%% R(—) by finitely generated free
O £G-modules.
O

Proof of Lemma [4.11l The adjointness of induction and restriction gives an
isomorphism of OxG-modules, for any OxG-module N(—),
Hompy (R, N(G/1)) 2 Hompe(Indz R, N(G/1))
= MorOFG(IndggG Ind%g R(%)v N(%))

There is a chain of isomorphisms,

N(7L) RorG Resroo R[G/H, 7L]7-L]:G
= N(#) ®o,c Homgy (R, R[G/1, +]oa)
=~ N(+4) ®0,c¢ Moro,.¢(Ind5% < md5% R(7), R[Z, Hlo,a)
= Moro, ¢ (Ind9% © nd5% R(7), N (7))
>~ Hompy (R, N(G/1))

Where the first isomorphism is Lemma [£.10| and the second and fourth are the
adjoint isomorphism mentioned above. The third isomorphism is from Lemma
for which we need that Indgg Id5% R(—) is finitely generated, but this is

implied by Lemma O

Recall the fixed point functors defined in Example The fixed point
functor R~ can be described explicitly as R¥ = R for all finite H, and on
morphisms,

R™(RY) =idg
R (IE)=(r— |H:K|r)
Ri(cg) = idR

|Lemma 4.13 Ind;os Ry, (—) = R~

Proof. The proof is split into two parts, first we check that the two functors
agree on objects, then we check they agree on morphisms. Throughout the proof
H, K and L will be finite subgroups of G. If « : G/L — G/K is a G-map then
we will write a, for the induced map

ay : Hompg (R[G/H], R|G/L]) — Hompgg(R[G/H], R|G/K))
and also for the induced map
ay : RIH\G/L]) — R|H\G/K]

where R[H\G/L]) is identified with Hompg(R[G/H], R[G/L]) using the iso-
morphism ¢ of Remark [I.7] Note that with this notation, o, o9 = 9 o a.
The functors Indoe Rp . (—) and R~ agree on objects:
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4.1  Induction

For any finite subgroup H of G,
IndrooRe, (G/H) = R(7) ®0, RIG/H, 7o o(!)|n,
= Ro, (1) ®o0, Hompa(R[G/H], R[G/1, o)

a*l @z ~1Q a,xzp for
- a:G/L G /K any G map,
= @ R®g HomRG(R[G/H],R[G/K])/:cKeHc/)m:c(R/[G/H]y,R[G/IE])
KeF zp€Hompg (R[G/H],R[G/L])

&P Hompa(R|G/H], RIG/K)) / er~asy

1%

KeF

~ HzxLl~a.[HxzL

= @ R[H\G/K]/a : G/[L — ]G/K[any C]F map.
KeF

Where the first isomorphism is Lemma [£.10] and the last is Lemma [1.6] Let
HzK € R[H\G/K] be an arbitrary element, and consider the G-map

0, : G/(HNK* ') — G/K
(HN K’”il) — oK

Then

¢((am)*(H1(HmKI”))) = () [H— Y wx
heH/(HNK="1)

= |H— > haK
heH/(HNK="1)
= (HzK)

Thus, in Indyos R, (G/H), the elements [Hx K] and [Hl(HﬁK"”_l)] are equal,
where [—] denotes an equivalence class of elements under the relation ~. So we
can write

Indror Rp, (G/H RIH\G/K [HzL]~a.[HrL]
moo 4y =~ 0. G G Hel)
n o-(G/H) KG?]E [H\G/K] JE, 72 G/ any G map

K<H

Next, we show that if K < H then [H1K| = [|H : K|H1H]. Let a; : G/K —
G/H be the projection. Then

b (o (HIK)) = (). [ H s Y2 hEK
heH/K

=(H+—|H:K|H)
=¢(|H : K|(H1H))

Combining the two facts proved above,
1
|

[HzK)=|H:HNK" '|[H1H] (%)
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4.1  Induction

In particular, any element [Hz K] is equal to some multiple of [H1H], so
Indros Ry, (G/H) = R

Showing the two functors Ind. s R, (—) and R~ agree on objects.
The functors Indyos Rp . (—) and R~ agree on morphisms:

Following the generator [H1H] up the chain of isomorphisms at the begin-
ning of the proof shows the element

1 ®idgig/m) € R(7) ®or RIG/H, 7o o(!)]s,
generates Ind, o, Ry, (G/H) = R, where
idge/n) € Hompa(R|G/H], RIG/H]) = R[G/H,G/H]3
Now, for some finite subgroup K with K < H,
Indror Ro, (RY) : 1®@idgig/m = 1@

Where 7 : R[G/K] — R|G/H] is the projection map. Following this back
down the chain of isomorphisms at the beginning of the proof, gives the element
[K1H]. Using (), [K1H] = [K1K], s0 Indros Rp, (Rf) is the identity on R,
as required.

Similarly, for some finite subgroup K with H < L, we calculate

Indroo Rop, (If7) 1 1 ®@idpig/m — 1@t m

Where tr,g € Hompg(R[G/L], R[G/H]) denotes the map L — 3 ., H.
Following this element back down the chain of isomorphisms we get the element
[L1H], which by (%) is equal to |L : H|[H1H]. Thus Indo, Rp . (If;) acts as
multiplication by |L : H| on R, as required.

For any element x € G, we calculate

Indﬂ-ooEOF(Cm) 1® idR[G/H] — 1 ® Y,

Where v, € Hompgg(R[G/H® '], R|G/H)) is the map H* '~ zH. Following
this down the chain of isomorphisms we get the element [H v o H ], which by
(x) is equal to [H* '1H® '|. Thus Indyoq Ry (c.) acts as the identity on R,
as required. O

The following proposition should be compared with Proposition [3.19

Proposition 4.14 Induction with 7o o takes projective resolutions of EO}'<_)
by Oz modules to projective resolutions of R~ by H modules.

Proof. Let P.(—) be a projective resolution of Ry (—) by Oz-modules, then
by Lemma

Indrop Pu(G/H) = P.(?) @0 Resroo RIG/H, N1
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Inducing Pi(—) — Rg . (—) with 7 o o and using Lemma m gives the chain
complex
Indros Pi(—) — R~

Induction preserves projectives (Proposition [1.20)), so we must show only that
the above is exact. Since induction is right exact, it is necessarily exact at
position —1 and position 0. Evaluating at G/H gives the resolution

Hompy (R, P.(G/1)) — R (*)

By [Nuc00, Theorem 3.2], the resolution P,(G/1) splits when restricted to a
complex of RH-modules for any finite subgroup H of G. Since Hompgy (R, —)
preserves the exactness of RH-split complexes, Hompgpy (R, P.(G/1)) is exact at
position i for all ¢ > 1, completing the proof. O

Remark 4.15. The Proposition above doesn’t hold with R, (—) replaced by
an arbitrary Oz-module M(—), as any resolution of M(—) by projective Oz-
modules will not in general split when evaluated at G/1.

4.2 HoMOLOGY AND CO-HOMOLOGY

Ext}, » and Torff are defined as in Section and the homology and coho-
mology functors are defined as follows, for any Hx module M(—),

H3y, (G, M(4)) = Extyy o (RT, M(#))

HI (G, M(#)) = Torl'7¢ (M (#), RY)
There is the following analog of Corollary

Proposition 4.16 For any cohomological Mackey functor M (—),

Hy (G, M(#)) = Ho (G, Resrog M(#))

Proof. Let P.(—) be a projective Ox-resolution of R(—), then

Hp, (G, Reror M(#)) = H" Moo, (P.(#), Resron M(#)
~ H" Mory, (Indyos Pu(#), M(£)
— H}, (G, M(4))

Where the isomorphism is adjoint isomorphism between induction and restric-
tion and Indy., Pi(#) is a projective Hr resolution of R7 by Proposition
414 O

4.3 FP,, CONDITIONS

The main result of this section is Theorem - if G is HF FP,, then G is
F-FP,,. For an explanation of relative F-cohomology and the condition F-FP,,
see [Nuc99).

Recall from Section [I.5] that an Hz-module M(—) is finitely generated if
and only if there exists a finitely generated free Hr-module F(—) and an epi-
morphism F(—) —» M(—). An Hr-module M(—) is said to be Hr FP,, for
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n € NU{oo}, if there exists a resolution of M (—) by projective modules which is
finitely generated in all degrees < n, and a group G is Hr FP,, if the H z-module
R~ is Hr FP,.

Using the same argument as in the proof of Lemma [3.25| gives:

|Lemma 4.17 If G is MzFP,, then G is Hr FP,,.

So there is a chain of implications:

O7FP, = MzFP, = HrFP, = F-FP, = FP, + { € gy oo }
of finite p-subgroups
Where the final implication is [LNI0L Proposition 4.2], where it is proved that
G is F-FPy if and only if G has finitely many conjugacy classes of finite p-
subgroups, for all primes p. It is conjectured in the same paper that a group
G of type FP,, with finitely many conjugacy classes of finite p subgroups is
F-FP |[LN10, Conjecture 4.3].

The implication Hr FP,, = F-FP,, is not known to be reversible except in
the case n = 0, which is Proposition [£.29]

Since G is MzFP, if and only if G has finitely many conjugacy classes
of finite subgroups (Lemma , the implication M zFP,, = HxrFP,, is not
reversible although we don’t know if, for example, a group G of type HrFP,
and Mz FPq is MzFP,,.

As discussed at the end of Section the implication O FP,, = M FP,
is not known to be reversible. There are examples due to Leary and Nucinkis of
groups which act properly and cocompactly on contractible G-CW-complexes
but which are not of type Ox FPy [LN03, Example 3, p.149]. By Remark
[436] these groups are of type Hr FP., showing that Hr FPo, # OxFP.
Leary and Nucinkis also give examples of groups which act properly and co-
compactly on contractible G-CW-complexes, are of type Oz FP(y but which are
not Or FP., |[LN03, Example 4, p.150]. Hence there can be no implication
HrFP,+OrFPy A O FP,.

Question 4.18. Are the conditions Hr FP,, and F-FP,, equivalent?

4.3.1 HrFP, impLIES F-FP,,

This section comprises a series of lemmas, building to the proof of Theorem
that the condition ‘H r FP,, implies the condition F-FP,,. Throughout, G
is a group, and H and K are arbitrary finite subgroups of G.

Lemma 4.19 If
0—A—B—C—0

is a F-split short exact sequence of RG-modules then

0—A —B —C —0

is exact.

Proof. Evaluating the fixed point functor M~ at the finite subgroup H is
equivalent to applying the functor Homgg (R, —) to M, but since the short
exact sequence is split as a sequence of RH-modules this functor is exact. O
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We say that a short exact sequence of RG-modules
0—A—B—C—0 (%)
is H-good if
0— A B L 0
is exact. Say it is F-good if it is H-good for all finite subgroups H of G.
Remark 4.20. If
0—A" —B —C —0
is a short exact sequence of fixed point functors then
0—A—B—C—0
is F-good.

Remark 4.21. By Lemma if (%) is RH-split then it is H-good, however
in general being H-good is a weaker property.

Additionally, we say that an RH module M has property (Pg) if for any
F-good short exact sequence (x), Hompgy (M, —) preserves the exactness of (x).
Since Homppy (M, —) is always left exact, having (Pp) is equivalent to asking
that for any F-good short exact sequence (x) and any RH-module homomor-
phism f: M — C, there is a RH-module homomorphism [ : M — B such that
the diagram below commutes.

M
\
1l
M g9
0 A B C 0

Lemma 4.22 If M has (Py) then any direct summand of M, as RH-modules,
has (Pg).

Proof. This is, with a minor alteration, the proof of [Rot09, Theorem 3.5(ii)].
Let N be a direct summand of M and consider the diagram with exact bottom
row, and assume the bottom row is F-good.

M N
S
Al lf
Y g
0 A B C 0

Where f is some arbitrary homomorphism, and 7 and ¢ are the projection and
inclusion maps respectively. Since M has Py, there is a map [ : M — B such
that gol = f o, the composition [ o ¢ is the required map. O
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Lemma 4.23 As RH-modules,
RG/K]= P RIH/K,
geH\G/K

Where K, ={h € H : g~ 'hg < K}.

Proof. Consider the action of H on G/K, two elements g1 K and g2 K are in
the same H orbit if and only if Hg1 K = Hgo K, and the H-stabiliser of an
element gK is the set of h € H with hgK = gK, equivalently g 'hg < K. O
Lemma 4.24 1. R has (Py).

2. R[H/L] has (Py), for L any subgroup of H.

3. R[G/K] has (Pp), for K any subgroup of G.

Proof. 1. The condition that Hompggy (R, —) preserves an F-good short ex-
act sequence (x) is exactly the condition that (x) is H-good, and F-good
implies H-good.

2. There are natural isomorphims,

Hompy (R[H/L|, —) = Homgp (RH ®rr R, —)
= HomRL(R, HOIDRH(RH, 7))
= HOHIRL(R, —)

Where the second isomorphism is [Bro94, p.63, (3.3)], now use part (1).
3. Use Lemma to rewrite R[G/K] (as an RH-module), as

RG/K|= P R[H/K,
geH\G/K

Thus

Hompy(RIG/K],-)= [] Hompnu(R[H/K,],~)
gEH\G/K

Now use part (2) and that direct products of exact sequences are exact.
O

| Lemma 4.25 If C has (Py) then (%) splits as a sequence of RH-modules.

Proof. Apply Hompy(C, —) to (%). O

| Lemma 4.26 If P, is an F-good projective resolution of R, then P, is F-split.

Proof. Fix a finite subgroup H and let 0; : P; — P;_1 denote the usual bound-
ary map of the chain complex and dy : Py — R the augmentation map. Consider
the short exact sequence

0—Kerdy — Ph— R —0
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This splits as a sequence of RH modules by Lemmas (1) and and by
Lemma Ker 0y has (Pr).

This is the base case of an induction which continues as follows: Assume
that P, is shown to split up to degree i — 1 and Ker0;_; has (Py), we show
it splits in degree ¢ + 1 also and Ker 9; has (Pg). Consider the short exact
sequence

Ker@i — P, — Ker 81'_1

Since Kerd;_; has (Pg), Lemma shows the short exact sequence splits,
and Lemmas and show that Ker 9; has (Pg). O

Remark 4.27. Similarly to Proposition the above Lemma may fail for
F-good resolutions of arbitrary modules.

| Theorem 4.28 If G is H# FP,, then G is F-FP,,.

Proof. Find a resolution P,(—) of R~ by finitely generated free Hz modules
up to dimension n. By Remark [£.20] P, is an F-good resolution of R by per-
mutation RG modules with finite stabilisers. By Lemma [£.26] P, is F-split, and
by [Nuc99, Definition 2.2] permutation RG modules with finite stabilisers are
F-projective. O

We only know of a converse for this theorem in the case n = 0:

Proposition 4.29 For any group G, the following conditions are equivalent:
1. G is Hr FPy.
2. Gis ]:-FP().
3. G has finitely many conjugacy classes of finite p-subgroups, for all primes
.

Proof. 1 = 2 is given by Theorem and 2 < 3 is [LN10, Proposition 4.2].
As part of the proof of [LN10, Proposition 4.2}, it is shown that if G has finitely
many conjugacy classes of finite p-subgroups then there is an F-split surjection

P ZG/P — 7
P<G
P of prime power order
Since every F-split surjection is F-good, taking fixed points gives a epimorphism
from a finitely generated free Hr-module onto R~ . O

4.4 COHOMOLOGICAL DIMENSION

The Hx cohomological dimension of a group G, denoted Hr cd G is defined to
length of the shortest projective resolution of R~ by Hr-modules, or equiva-
lently

HrcdG =inf{n : Hy (G, M(+)#0), where M(—) is some Hz-module}
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Remark 4.30. In [Degl3b|] the H r cohomological dimension is defined as
HredG =inf{n : Hp (G, Resgi M(+) #0), for some HrF-module M(—)}
The two definitions are equivalent by Proposition [4.16]
In [Degl3bl 6.2.16], Degrijse shows that for all groups G with Hxcd G < oo,
F-cdG=HrcdG
We can improve this to:

Theorem 4.31 For all groups G,

F-cdG=HrcdG

Proof. That F-cdG < HzrcdG follows immediately from Remark [£:20] and
Lemma

For the opposite inequality, we first use [Ganl2, Lemma 3.4] which states
that for a group G with F-cd G < n there is an F-projective resolution P, of
Z of length n, where each P; is a permutation module with finite stabilisers.
Given such a P,, we take fixed points of P, to get the H r resolution P . Since
P, is F-split, P is exact by Lemma O

Proposition 4.32 If G acts properly on a contractible G-CW complex of di-
mension n then Hrcd G < n.

This fact is well known for F-cd instead of H r cd, but since a direct proof
for Hr cd is both interesting and short we provide one.

Proof. Let P, denote the cellular chain complex for the contractible G-CW-
complex X of dimension n and take fixed points to get the complex P, — R~
of H r-modules. Since the action of G on X is proper the modules comprising
P, are permutation modules with finite stabilisers and so P, is a chain complex

*

of free Hr-modules. By a result of Bouc [Bou99] and Kropholler-Wall [KWTT]
this chain complex splits when restricted to a complex of RH-modules for any
finite subgroup H of G. Thus P — R is exact for any finite subgroup H. [

This leads naturally to the question:

Question 4.33. If Hrcd G = n, does there exist a contractible proper G-CW
complex of dimension n?

Brown has conjectured the following:

Question 4.34. [Bro94, VIII.11 p.226] If G is virtually torsion-free with finite
virtual cohomological dimension, does there exist a contractible proper G-CW
complex of dimension ved G?

If G is virtually torsion free then ved G = Hrcd G [MPNOQG], so a positive
answer to Question would give a positive answer to Question as well.

Related to this is the following question, posed using F-cd instead of Hr cd
by Nucinkis.
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Question 4.35. [Nuc00, p.337] Does Hr cd G < oo imply that O cd G < c0?

Remark 4.36. If G acts properly and cocompactly on a contractible G-CW-
complex then, by a modification of the argument of the proof of Lemma[4.32] G
is Hr FP4 also. However, if G acts properly on a finite type but infinite dimen-
sional complex X, then the Theorem of Bouc and Kropholler-Wall doesn’t apply
and we do not know if the cellular chain complex of X splits when restricted to
a finite subgroup.

Question 4.37. If G acts properly on a contractible G-CW-complex of finite
type, but not necessarily finite dimension, then is G of type Hr FP7
4.5 (QUESTIONS

Collected here are some of the questions related to cohomological Mackey func-
tors from this section.

Question Are the conditions Hx FP,, and F-FP,, equivalent?

Question If Hr cd G = n, does G act properly on a contractible G-CW

complex of dimension n?

Question If G acts properly on a contractible G-CW-complex of finite
type, but not necessarily finite dimension, then is G of type Hr FP 7
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5 DuaLiTy GROUPS

In [DLO3] the notion of Bredon-Poincaré duality groups is first defined and in
[MP13], Definition 5.1] this is extended to Bredon-duality groups over arbitrary
rings. See [Bie81 Chapter 9] and [Dav00] for the classical case.

Definition 5.1 [MP13| Definition 5.1] A group G is Bredon-duality of dimen-
sion n over R if

1. Orcdr G =n.
2. Gis O FP, over R.
3. For all finite subgroups H of G there is an integer ny such that

R-flat ifi=ng

H'(WH,RIWH]) = { 0 else.

Furthermore, G is Bredon-Poincaré-duality over R if for all finite H,

H""(WH,RWH]) = R

For torsion-free groups this reduces to the usual definition of duality and
Poincaré-duality groups.
We will write V for the set

V = {nr : F a non-trivial finite subgroup of G} C {0,...,n}
In Example we will build Bredon duality groups with arbitrary V(G).

Question 5.2. Is it possible to construct Bredon Poincaré duality groups with
prescribed V(G)?

Lemma 5.3 1. If G is Bredon duality of dimension n over Z then ny =
cdg WH for all finite H, and nijq < n.

2. If G is R-torsion-free and Bredon duality of dimension n over R then
nyg = cdgr WH and niyq < n.

To prove the Lemma we need the following proposition, an analog of [Bro94,
VIIL.6.7] for arbitrary rings R and proved in exactly the same way.

| Proposition 5.4 If G is FP over R then cdg G = max{n : H"(G, RG) # 0}.

Proof of Lemma (5.3l 1. Since G is O FP, WH is FP, for all finite H
(Corollary [2.35) and we may apply [Bie81l Corollary 3.6] to get a short
exact sequence

0 — HY(WH,ZWH]) ©z Q — HY(W H,Q ©z Z[W H])

— Tor} (H™ (W H, Z[W H]),Q) — 0
HYTY (W H,Z|W H)) is Z-flat for all ¢ giving an isomorphism

HY(WH,ZWH)) ®z Q= HY(WH, QW H])
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Proposition shows nyg = ¢dg WH. Finally, cdg G < O cdz G for all
groups G [BLNOI, Theorem 2], so nig < n.

2. If G is R-torsion free then for any finite subgroup H, cdg NgH < cdr G <
Orcdr G and NgH is FP,, over R by Corollary Since

H'(NgH,R[NgH]) = H (WH, R[W HJ)

Proposition shows ng = cdg NgH = cdg WH. Finally, nig < n
because cdr G < Or cdr G (Lemma [2.22)).
O

Question 5.5. Is it always true that n = nyq?

Lemma 5.6 If G is Bredon duality of dimension n over Z then G is Bredon
duality of dimension n over any ring R.

Proof. Since G is O FP over Z, G is O FP over R. As in the proof of part
(1) of the previous lemma there is an isomorphism for any finite subgroup H,

HYWH,Z[WH)) ®z R = HY(WH, R[W H))

Observing that if an Abelian group M is Z-flat then M ®7 R is R-flat completes
the proof.
O

5.1 EXAMPLES

In this section we provide several sources of examples of Bredon duality groups,
showing that Bredon duality is not too rare a property.

5.1.1 SMOOTH ACTIONS ON MANIFOLDS

If G admits a cocompact n-dimensional manifold model M for Eg,G such
that M is a submanifold then, using [Bro94, Ex.4 p209] and Poincaré-duality
[Hat02, Theorem 3.35], for any finite subgroup H,

Z ifi=dimMH?

HY (WH,Z|WH]) = { 0 clse

Making G into a Bredon-Poincaré duality group over Z and thus also over R.
Note that we don’t need M to be a model for Ex,G to get the condition on
cohomology, only that M is a submanifold and the action of WH on M
is proper and cocompact. However, the condition that M be a cocompact
model for E,G does give the required O FP condition. The following Lemma
guarantees that M ¥ is a submanifold of M:

Lemma 5.7 [Dav08, 10.1 p.177] If G is a discrete group acting properly and
locally linearly on a manifold M then the fixed points subsets of finite subgroups
of G are locally flat submanifolds of M.

Locally linear is a technical condition, the definition of which can be found
in [Dav08|, Definition 10.1.1], for our purposes it is enough to know that if M
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is a smooth manifold and G acts by diffeomorphisms then the action is locally
linear. The locally linear condition is necessary - in [DL03] examples are given of
virtually torsion-free groups acting as a discrete cocompact group of isometries
of a CAT(0) manifold which are not Bredon duality, ie. the examples are of
virtual-Poincaré duality groups which are not Bredon duality.

We can generalise Wall’s conjecture, first posed in [Wal79], which asks if

every finitely presented Poincaré duality group over Z admits a manifold model
for BG.

Question 5.8. Do all finitely presented Bredon-Poincaré duality groups over Z
admit cocompact manifold models M for E, G, where for each finite subgroup
H the fixed point set M is a submanifold.

Example 5.9. Let p be a prime and let G be the wreath product

G=2:C,=|EPz] xC,

Zp

Where €, denotes the cyclic group of order p. G acts properly and by diffeo-
morphisms on R?: The copies of Z act by translation along the axes, and the
C)p permutes the axes. The action is cocompact with fundamental domain the
quotient of the p-torus by the action of Cp. The finite subgroup C, is a rep-
resentative of the only conjugacy class of finite subgroups in G, and has fixed
point set the line {(\,---, ) : A€ R}. If 2z = (21,..., %) € ZP then the fixed
point set of (Cp)* is the line {(A+z1,..., A+ 2,) : A€ R}

Hence RP is a model for E,G and, invoking Lemma G is a Bredon
Poincaré duality group of dimension p with ¥V = {1}.

Example 5.10. Fixing positive integers m < n, if G = Z" x Cy where Cy, the
cyclic group of order 2, acts as the antipodal map on Z"~" < Z" then

NgCy =CqCo={g€ G : gz = zg}

But this is exactly the fixed points of the action of Co on G, hence NgCs =
Z™ x Cq and
R ifi=m

H'(NgCs, R[NgCs)) = { 0 else.

G embeds as a discrete subgroup of Isom(R") = R™" x GL,,(R) and acts properly
and cocompactly on R". It follows that G is O FP and Orcd G = n so G is
Bredon-Poincaré duality of dimension n over any ring R with V = {m}.

Example 5.11. Similarly to the previous example we can take

G=7"x écg
=1

Where the j** copy of Cy acts antipodally on the j** copy of Z in Z". Note that
G is isomorphic to (D)™ where Do, denotes the infinite dihedral group. As
before G embeds as a discrete subgroup of Isom(R™) = R™ x GL,(R) and acts
properly and cocompactly on R™. Thus G is O FP and Orcd G = n, so G is
Bredon-Poincaré duality of dimension n over any ring R with V(G) = {0,...,n}.
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More generally, we could take a subgroup @:’;1 Cy —> @?:1 C5 and form
the semi-direct product of Z™ with this subgroup. Although this gives us a
range of possible values for V(G) it is impossible to produce a full range of
values. Consider the case m = 2, so we have a group

G=17Z"x(AxB)

Where A = B = (5, and both A and B act either trivially or antipodally on
each coordinate of Z™. We can describe the normaliser NgA by an element
(a1,...,an) € {0,1}™, so

N[ Z ifa;=1
NGA:<G_91{O elso. })x(AxB)

Similarly we can descibe NgB by an element (by,...,b,) € {0,1}". One calcu-
lates that the normaliser Ng(A x B) is described by the element

(al,...,an)/\(bl,...,bn)

Where A denotes the boolean AND function.

If C denotes the subgroup of A x B generated by the element (1, 1) then the
normaliser of NgC' is described by the element

—\((al,...,an) @ (bl,,bn))

Where & denotes the boolean XOR function, and — the unary negation operator.

Now, using the above it can be shown that, for example, a Bredon Poincaré
duality group of dimension 4 with the form

G:Z4 X éCQ
i=1

cannot have V(G) = {1,3}. Assume that such a G exists, clearly m > 2, let A

and B denote two of the Cy summands of @72, Cy. Without loss of generality we

can assume that A and B don’t have the same action on Z3. If ny = ng = 1 then
by the description of the normaliser of A x B above, naxp = 0, a contradiction.
If ng = np = 3 then in order for A and B not to have the same action on Z3,
we must have (up to some reordering of the coordinates)

(al,...,a4) = (1,1,1,0)
(bla"'ab4) = (0517171)

So naxp = 2, a contradiction. Finally, if n4 = 1 and ng = 3 then let C be
the subgroup of A x B generated by (1,1). There are two possibilities, up to
reordering of the coordinates, either

(ala"'aa4) = (1717170)
(b1, ...,bs) = (1,0,0,0)

or
(al,...,a4) = (1,1,1,0)
(b1,...,b4) =(0,0,0,1)

In the first case, nc = 2, and in the second case naxp = 0, both contradictions.
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Example 5.12. In [FWO08| Theorem 6.1}, Farb and Weinberger construct a
group acting properly cocompactly and by diffeomorphisms on R™ for some n -
and thus is a Bredon Poincaré duality group. However the group constructed is
not virtually torsion-free.

Remark 5.13. Restrictions on the dimensions of the fixed point sets.

Suppose G is a group acting smoothly on an m-dimensional manifold M,
and suppose furthermore that G contains a finite cyclic subgroup C, fixing
a point & € M. There is an induced linear action of C,, on the tangent space
T, M = R™, equivalently a representation of C), into the orthogonal group O(m).
We can use this to give some small restrictions on the possible dimensions of
the submanifold M >, and hence on the values of ne,-

A representation of C}, in O(m) is simply a matrix M with M? = 1. Using
the Jordan-Chevalley decomposition we see that M is semi-simple, so viewing
M as a matrix over C it is diagonalisable. However, since MP = 1 and the
characteristic polynomial has coefficients in R, all the eigenvalues come in pairs
w, w1, where w is a p'" root of unity. Thus M is conjugate via complex matrices
to

w1

w1 —1
-1

S
o
©
|

W' Ymo

2 +1
Depending on whether m is even or odd. The blank space in the matrices should
be filled with zeros. Note that the +1 term can only be a —1 if p = 2. The

matrix
w 0
0 w!

is conjugate via complex matrices to
cosf —sinf
Ro = (sin@ cos 6 )

Thus M is conjugate, via complex matrices, to Ry, ©---® Ry, , or Rg, ©---®
R, ., © (1), and by [Zhalll, 5.11], they are conjugate via real matrices as
well. Hence the fixed point sets are the same. Noting that the rotation matrix
Ry fixes only the origin when 6 # 0, we conclude that for p # 2, the fixed point
set M©» must be even dimensional if m is even, and odd dimensional otherwise.

Consider the case that G is a Bredon-Poincaré duality group, arising from
a smooth cocompact action on an m-dimensional manifold M, and C), for p #
2 is some finite subgroup of G. Then n¢, is exactly the dimension of the
submanifold M, and by the discussion above nc, is odd dimensional if m

is odd dimensional, even dimensional otherwise. As demonstrated by Example
there are no restrictions when p = 2.

5.1.2 ONE RELATOR GROUPS

Let G be an FP, torsion-free group of cohomological dimension 2 which doesn’t
split as a free product, this is equivalent to asking that H'(G,ZG) = 0 ([Bie81],
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Theorem 7.1], see also [Swa69]). We borrow an argument of Bieri and Eckmann
in [BET3, 5.2] to prove that H?(G,ZG) is a flat Z-module and hence G is a
duality group. Consider the short exact sequence of ZG modules

OHZGﬁ)ZGHFPGHO
This yields a long exact sequence
... — HY(G,F,G) — H*(G,2G) =% H*(G,2G) — -
By the universal coefficient theorem,
HY(G,F,G) = H' (G,ZG) @z F, =0

Hence the map H%(G,ZG) —% H2(G,ZG) must have zero kernel for all p,
in other words H?(G,Z@) is torsion-free. But the torsion-free Z-modules are
exactly the flat Z-modules. Thus G is duality.

Let G be a one-relator group (see [LS01], §5] for background on these groups),
G has the following properties:

1. G is O FP and Orcdyz G = 2, since it has a cocompact 2-dimensional
classifying space for proper actions [Lic03, 4.12].

2. G contains a torsion-free subgroup @ of finite index [FKS72].

If cdz @ < 1 then @ is either finite or a finitely generated free group and G
is either finite or virtually finitely generated-free. Thus G is Bredon duality
over Z by [5.24] [5.26] and [5.25] Assume therefore that cdz @ = 2. Being finite
index in G, Q is also FPy and H(Q,ZQ) = H'(G,ZG) = 0, thus by the above
paragraph @ is a duality group and G is virtual duality.

Every finite subgroup of G is subconjugated to a finite cyclic self-normalising
subgroup C of G [LS01], 5.17,5.19], and furthermore the normaliser of any finite
subgroup is subconjugate to C' - if K is a non-trivial subgroup of C and n € NgK
then n=!CnNC # 1 and [LS01L 5.19] implies that n € C. For an arbitrary non-
trivial finite subgroup K’, since K’ is conjugate to some K < C, the normaliser
N¢gK' is conjugate to NgK < C.

Since the normaliser of any non-trivial finite subgroup F' is finite,

0 ifi>0,

H'(NgF,Z[NgF)) { 7 ifi=0.

Hence G is Bredon duality of dimension 2.

Proposition 5.14 If G is a one relator group then either

1. G is finite, and hence Bredon-Poincaré duality of dimension 0 over any
ring R.

2. G is virtually-free, and hence Bredon duality of dimension 1 over any ring
R.

3. G is none of the above, but splits as a finite graph of groups with finite
edge groups, and virtually duality vertex groups.

4. G is Bredon duality, and virtually duality, of dimension 2 over any ring

R, with V(G) = {0}.
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Proof. It remains to show that if G is a one relator group with H!(G,ZG) #
0, then we are in situation (3) above. Since G is Or FPy, G has bounded
orders of finite subgroups and by a result of Linnell, G is accessible - in other
words G admits a decomposition as the fundamental group of a finite graph of
groups with finite edge groups and vertex groups G, satisfying H(G,ZG) = 0
[Lin83]. These vertex groups are subgroups of virtually torsion-free groups so
in particular virtually torsion-free with O cdz G < 2. Lemmal[5.15 below gives
that the vertex groups are FPs. Hence by the discussion at the beginning of
this section, these edge groups are virtually duality. O

Lemma 5.15 Let G be a group which splits as a finite graph of groups with
finite edge groups G, indexed by F, and vertex groups GG, indexed by V. Then
if G is FPs, so are the vertex groups G, .

Proof. Fix a vertex group G,. Let M), for A € A, be a directed system of ZG,
modules with lim M) = 0. To use the Bieri-Eckmann criterion [Bie81, Theorem

1.3], we must show that ligH"(Gv,M,\) =0fori=1,2.
The Mayer-Vietoris sequence associated to the graph of groups is
o — HY(G,—) — @ H Gy, —) — P H(Ge,—) — -+
veV ecE
Now th »=0, so ligﬂlnd%gv My = 0 as well. Evaluating the Mayer-Vietoris
sequence at Ind%gv M, taking the limit, and using the Bieri-Eckmann criterion,
implies
lim @B H(G,, Indz¢, M) =0
A yev

In particular ligH"(Gv7 Ind%gv My) = 0, and because M} is a direct summand
of Ind%gv M, [Bro94, VII.5.1], this implies ligHi(Gv7 M,) = 0. O

Question 5.16. Are the groups in (3) of the Proposition also Bredon duality
groups.

5.1.3 DISCRETE SUBGROUPS OF LIE GROUPS

If L is a Lie group with finitely many path components, K a maximal compact
subgroup and G a discrete subgroup then L/K is a model for Eg,G. The
space L/K is a manifold and the action of G on L/K is smooth so the fixed
point subsets of finite groups are submanifolds of L/K, using Lemma If
we assume that the action is cocompact then G is seen to be of type Ox FP,
OrcdG = dimL/K and G is a Bredon duality group. See [Liic03, Theorem
5.24] for a statement of these results.

Example 5.17. In [Rag84][Rag95], examples of cocompact lattices in finite
covers of the Lie group Spin(2,n) are given which are not virtually torsion-free.

5.1.4 SoLUBLE GROUPS

The reader is referred to [Rob96l §5][Rot95 §5] for background material on
soluble groups. In [Kro8G], Kropholler proved that for a soluble group G, the
following conditions are equivalent:
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1. cdG =hdG < oco.
2. G is FP.
3. G is duality.
Additionally, if one of the above holds, G is Poincaré Duality if and only if G is

polycyclic. Combining this with [Kro93], where it is shown that soluble groups
of type FP, are virtually of type FP, gives.

Theorem 5.18 [Kro86][Kro93] The following conditions on a virtually-soluble
group G are equivalent:

1. Gis FP.

2. @ is virtually duality.

3. G is virtually torsion-free and ved G = hG < c©.

Additionally, if one of the above holds then G is virtually Poincaré duality if
and only if G is virtually-polycyclic.

If G is virtually soluble and Bredon duality, then G is O FP,, hence also
FP, and virtually duality. Conversely, given a virtually soluble duality group
G, [IMPN10], gives that G is type Oz FP and Oz cd G = hG < 0. To see that G
is Bredon duality we must check the cohomology condition on the Weyl groups.
Since G is Of FP, the Weyl groups NgF' of any finite subgroup F of G are
FP . Subgroups of virtually-soluble groups are virtually-soluble [Rob96, 5.1.1],
so the normalisers NgF' are virtually-soluble FP., and hence virtually duality
by Theorem above, and so satisfy the required condition on cohomology.
Hence G is Bredon duality.

If G is virtually soluble Poincaré-duality then G is virtually-polycyclic. Sub-
groups of virtually-polycyclic groups are virtually-polycyclic [Rob96, p.52], so
NgF is polycyclic FP for all finite subgroups F' and

H""(NgF,Z[NaF)) = Z

Thus G is Bredon-Poincaré duality. We have arrived at the following restate-
ment of [MPI3, Example 5.6]:

Proposition 5.19 We can add the following equivalent condition to Theorem

4. G is Bredon duality.

Additionally, if G is Bredon duality then G is virtually Poincaré duality if and
only if GG is virtually-polycyclic if and only if G is Bredon-Poincaré duality.

5.1.5 ELEMENTARY AMENABLE GROUPS

If G is an elementary amenable group FP, group, [HL92] provides a decom-
position of G as a locally-finite by virtually-soluble group. Since G is FP, it
has a bound on the orders of its finite subgroups [Kro93| and thus G is finite-
by-virtually soluble. Moreover, [KMPNOQ9, p.3] yields that G has Oxcdy G =
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hG < oo and combining this with the result of [Sch78, Theorem 6] that the class
of virtually-soluble groups of finite cohomological dimension is extension closed
implies G is in fact virtually soluble.

Thus any elementary amenable FP,, group is virtually soluble FP.,, in
particular Bredon duality over Z of dimension hG. The converse, that every
elementary amenable Bredon duality group is FP, is obvious.

The above Proposition could be viewed as adding an additional equivalent
condition to [KMPNQ9, Theorem 1.1], so that it now reads:

Theorem 5.20 The following conditions on an elementary amenable group G
are equivalent:

1. G has cocompact classifying space for proper actions, is O FL, Oz FP
or O FP,.

2. G is virtually-F, virtually-FL, virtually-FP or FP.

3. G is polycyclic-by-finite or G has a normal subgroup K such that G/K is
Euclidean Crystallographic and for each subgroup L with K < L and L/K
finite, there is a finitely generated virtually nilpotent subgroup B = B(L)

of L and an element ¢t = (L) such that t 1Bt < B and L = Bxp, is a
strictly ascending HNN extension with base B and stable letter .

4. @ is virtually-duality or Bredon duality.
Additionally, if one of the above conditions is satisfied then G is Bredon-

Poincaré-duality if and only if G is virtually-polycyclic if and only if G is virtu-
ally Poincaré duality.

The above theorem implies that if G is elementary amenable Or FP, then
the condition H™(G, ZG) = Z implies that G is virtually Poincaré duality and
hence Bredon-Poincaré duality, so for all finite subgroups H"* (N F,ZNgF') =
Z. A natural question is whether

H""(NgF,Z[NaF)) = Z

can ever occur for an elementary amenable, or indeed a soluble Bredon-duality,
but not Bredon-Poincaré-duality group. An example of this behaviour is given
below.

Example 5.21. We construct a finite index extension of the Baumslag-Solitar
group BS(1,p), for p a prime.

BS(1,p) = (z,y : y oy = xP)
This has a normal series
1< (x) D ((z)) < BS(1,p)

Whose quotients are (z)/1 = Z, ((z))/(z) = Cp~ and BS(1,p)/{(z)) = Z.
Clearly BS(1,p) is finitely generated torsion-free soluble with hBS(1,p) = 2,
but not polycyclic, since Cpe does not have max, thus BS(1, p) is not Poincaré-
duality. Also since BS(1,p) is an HNN extension of (x) = Z it has cohomological
dimension 2 [Bie81 Proposition 6.12] and thus ¢d BS(1,p) = hBS(1,p). By
Theorem since BS(1,p) is torsion-free, BS(1,p) is a duality group.
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Recall that elements of BS(1,p) can be put in a normal form: yfx*y=7
where i,7 > 0 and if 4,7 > 0 then n t k. Consider the automorphism ¢ of
BS(1,p), sending  + x~! and y ~ y, an automorphism since it is its own
inverse and because the relation y~!'xy = P in BS(1,p) implies the relation

y~tx~ly = x7P. Let y’2* y~7 be an element in normal form.

pry'aty T yla Ty
So the only fixed points of ¢ are in the subgroup (y) = Z. Form the extension
1— BS(1l,p) — G—Cy — 1

Where C5 acts by the automorphism . The property of being soluble is exten-
sion closed [Rob96] 5.1.1], so G is soluble virtual duality and Bredon duality by
Proposition The normaliser

NgCo =CqCy ={g € G : gz = zg for the generator z € Cs}

is the points in G fixed by ¢, so CqCs = Z. By a standard argument CgCj is
finite index in NgCs and thus NgCy is virtually-Z and H!(NgCs, Z|[NgCs]) =
Z. However since BS(1,p) is not Poincaré duality and is finite index in G,

H*(G,ZG) = H"(BS(1,p),Z[BS(1,p)) = P Z
No

Remark 5.22. Restrictions on ny

We can use Remark and a Theorem, proved independently by Baues
[Bau04] and Dekimpe [Dek03], that any virtually polycyclic group G can be
realised as a NIL affine crystallographic group, to get restrictions on the values
of ng. The theorem states that G acts properly and cocompactly on a simply
connected nilpotent Lie group of dimension hG, so by Remark it C) is a
cyclic subgroup of G with p prime and not equal to 2, ng, is odd if hG is odd
and nc, is even if hG is even.

Question 5.23. Do we have restrictions like the above when G is Bredon-
Poincaré duality, but not necessarily elementary amenable?

5.2 Low DIMENSIONS

This section is devoted to the study of Bredon duality, and Bredon-Poincaré
duality, groups of low dimension. We completely classify those of dimension 0
in Lemma We partially classify those of dimension 1 - see Propositions
and and Question [5.27] There is a discussion of the dimension 2 case.

Recall [Bie81l, Proposition 9.17(a)], that a group G is duality of dimension
0 over R if and only if G is finite and the order of G is invertible in R.

Lemma 5.24 G is Bredon duality of dimension 0 over R if and only if |G| is
finite. Any such group is necessarily Bredon Poincaré duality. Notice that this
is independent of the ring R.

Proof. If GG is Bredon duality of dimension 0 then

R-flat ifn=0

Hn(G’RG)_{ 0 ifn>0
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But, by [Geo08, 13.2.11]

R if |G| is finite
0 else.

H°(G,RG) = {

Hence G is finite and moreover G is Bredon-Poincaré duality.

Conversely, if G is finite then Orcdr G = 0 and G is O FP, over R.
Finally the Weyl groups of any finite subgroup will be finite so by [Geo08|
13.2.11,13.3.1].

R ifn=0
n —
H"(WH,RWH)]) = { 0 ifn>0
Thus G is Bredon-Poincaré duality of dimension 0. O

Recall [Bie81] Proposition 9.17(b)] - the duality groups of dimension 1 over
R are exactly the groups of type FP; over R (equivalently finitely generated
groups [Bie81l Proposition 2.1]) with cdg G = 1.

Proposition 5.25 If G is an R-torsion free infinite group then the following
are equivalent:

1. G is Bredon duality over R, of dimension 1.

2. @G is finitely generated and virtually-free.

3. G is virtually duality over R, of dimension 1.

Proof. That 2 = 3 is [Bie&1], Proposition 9.17(b)]. For 3 = 2, let G be virtually
duality over R of dimension 1, then by [Dun79] G acts properly on a tree. Since
G is assumed finitely generated, by [Ant11l, Theorem 3.3] G is virtually-free.

For 1 = 2, if G is Bredon duality over R of dimension 1, then G is automat-
ically finitely generated and Oz cdr G = 1. By Lemma cdr G =1 so, as
above, by [Dun79] and [Ant1ll Theorem 3.3], G is virtually-free.

For 2 = 1, if G is virtually finitely generated free then G acts properly and
cocompactly on a tree, so G is O FP over R with Orcdg G = 1. As G is
Oz FP, for any finite subgroup K, the normaliser Ng K is finitely generated.
Subgroups of virtually-free groups are virtually-free, so Ng K is virtually finitely
generated free, in particular:

H/(WK,ZIWK]) = H/(NeK, Z[NcK]) = { OZ'ﬂat i(fsre’ =Nk

where ng = 0 or 1. Thus G is Bredon duality over Z and hence also over R. [

Remark 5.26. The only place that the condition G be R-torsion-free was used
was in the implication 1 = 2, the problem is the condition Orcdr G < 1
is not known to imply that G acts properly on a tree. If we take R = Z
then Oxcdy G < 1 implies G acts properly on a tree by a result of Dunwoody
[Dun79]. We conclude that over Z, G is Bredon duality of dimension 1 if and
only G is finitely generated virtually free, if and only if G is virtually duality of
dimension 1.
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Question 5.27. What characterises Bredon-duality groups of dimension 1 over
R?

We don’t need the R-torsion free condition to deal with dimension 1 Bredon-
Poincaré duality groups over R.

Proposition 5.28 If GG is an infinite group then the following are equivalent:

1. G is Bredon-Poincaré duality over R, of dimension 1.
2. @ is virtually infinite cyclic.

3. G is virtually Poincaré duality over R, of dimension 1.

Proof. The equivalence follows from the fact that for G a finitely generated
group, G is virtually infinite cyclic if and only if H!(G,RG) = R [Geo08,
13.5.5,13.5.9]. O

In dimension 2, we only deal with Bredon-Poincaré duality groups over Z.

Lemma 5.29 If G is virtually a surface group then G is Bredon Poincaré
duality.

Proof. If G is a virtual surface group, G has finite index subgroup H with
H the fundamental group of some closed surface. Firstly, assume H = m(5,)
where S, is the orientable surface of genus g. If g = 0 then S is the 2-sphere
and G is a finite group, thus G is Bredon-Poincaré duality by Lemma [5.24 We
now treat the cases ¢ = 1 and g > 1 seperately. If g > 0 then by [Misl0,
Lemma 4.4(b)] G is O FP over Z with Orcdz G < 2. If g > 1 then, in the
same lemma, Mislin shows that the upper half-plane is a model for E,G with
G acting by hyperbolic isometries. Giving the upper half plane the structure
of a Riemannian manifold with the Poincaré metric, this action is by isometries
and [Dav08| 10.1] gives that the fixed point sets are all submanifolds, hence G
is Bredon-Poincaré duality of dimension 2. If ¢ = 1 then by [Mis10, Lemma
4.3], G acts by affine maps on R? so again R? is an E, G whose fixed point sets
are submanifolds, and thus G is Bredon-Poincaré duality of dimension 2. We
conclude that orientable virtual Poincaré duality groups of dimension 2 groups
are Bredon-Poincaré duality of the same dimension.

Now we treat the non-orientable case, so H = m1(T}) where T} is a closed
non-orientable surface of genus k. In particular T} has euler characteristic
X(Tkx) = 2 — k. H has an index 2 subgroup H’ isomorphic to the fundamen-
tal group of the closed orientable surface of euler characteristic 2x(S), thus
H' = m(Sk_1) the closed orientable surface of genus kK — 1. If k¥ = 1 then
H =7/2 and G is a finite group, thus Bredon Poincaré duality by Lemma
Assume then that k > 1, we are now back in the situation above where G is
virtually S, for g > 0 and as such G is Bredon-Poincaré duality of dimension n,
by the previous part of the proof. O
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Proposition 5.30 The following conditions are equivalent:

1. G is virtually Poincaré duality of dimension 2 over Z.
2. G is virtually surface.

3. G is Bredon Poincaré duality of dimension 2 over Z.

Proof. That 1 < 2 is [Eck87] and that 2 = 3 is Lemma The implication
3 = 2 is provided by [Bow04, Theorem 0.1] which states that any FPy group
with H?(G,QG) = Q is a virtual surface group and hence a virtual Poincaré
duality group. If G is Bredon Poincaré duality of dimension 2 then H*(G, QG) =
HY(G,2ZG) ® Q = Q and G is FPy by Corollary and we may apply the
aforementioned theorem. O

The above proposition doesn’t extend from Poincaré duality to just duality,
as demonstrated by [Sch78] where an example, based on Higmans group, is
given of a Bredon duality group of dimension 2 over Z which is not virtual
duality. This example is extension of a finite group by a virtual duality group
of dimension 2. In the theorem it is proved that the group is not virtually
torsion-free, that it is Bredon duality follows from Proposition

Question 5.31. Do there exist virtual duality groups of dimension 2 which are
not Bredon duality?

Davis and Leary have examples of groups which are virtual Poincaré duality
groups but not Bredon duality [DL03, Theorem 2, Example 2], their example is
dimension 6.

Question 5.32. Whats the situation in dimension 2 for any ring R?

5.3 EXTENSIONS

In the classical case, extensions of duality groups by duality groups are always
duality [Bie81l 9.10]. In the Bredon case the situation is more complex, for ex-
ample semi-direct products of torsion-free groups by finite groups may not even
be Ox FPy [LN03|. Davis and Leary build examples of finite index extensions
of Poincaré duality groups which are not Bredon duality, although they are
Or FP. |DL03, Theorem 2], and examples of virtual duality groups which are
not of type Oz FPo, [DL0O3, Theorem 1]. In [FL04], Farrell and Lafont give ex-
amples of prime index extensions of §-hyperbolic Poincaré duality groups which
are not Bredon Poincaré duality. In [MP13, §5], Martinez-Perez considers p-
power extensions of duality groups over fields of characteristic p, showing that
if @ is a p-group and G is Poincaré duality of dimension n over a field K of char-
acteristic p then then G x @ is Bredon Poincaré duality of dimension n. These
results do not extend from Poincaré duality groups to duality groups however
[MP13] §6].

The only really tractable case is that of a direct product of two Bredon
duality groups. There are also some results in this section on low dimensional
extensions.
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5.3.1 DIRECT PRODUCTS
Lemma 5.33 If G and H are Oz FP over R then G x H is O FP over R and

OrcdpGxH<OrcdrG+Orcdr H

Proof. That Or cdr Gx H < Or cdr G+ Ox cdg H is a special case of [Flul0),
3.59], the proof used involves showing that given resolutions P.(—) of R(—) by
Or G modules and Q.(—) of R(—) by Oz H modules, the total complex of the
tensor product double complex is a projective resolution of R(—) by projective
Ox(G x H) modules [FlulQ, 3.54]. So to prove that G x H is Oz FP it is
sufficient to show that if P.(—) and Q.(—) are finite type resolutions, then so
is the total complex, but this follows from [Flul0l, 3.49]. O

Lemma 5.34 If L is a finite subgroup of G x G5 then the normaliser N¢g, xq, L
is finite index in Ng,m L X Ng,maL, where m; and me are the projection maps
from G1 x G5 onto the factors G; and Gs.
Proof. It’s straightforward to check that

Ng,xa, L < Ng,mL X Ng,mL

To see it is finite index, observe that Ng,m1 L X Ng,meL acts by conjugation
on (mL x meL)/L, but this set is finite so the stabiliser of L, which is exactly
Ng,xa, L, is finite index in Ng,m L x Ng,maL. O

Lemma 5.35 If G; and G5 are Bredon duality (resp. Bredon Poincare du-
ality), then G = G; x G4 is Bredon duality (resp. Bredon Poincare duality).
Furthermore

V(Gl X GQ) = {’Ul + vy v € V(Gl) U {nl(Gl)} and vy € V(GQ) U {nl(Gg)}}

Proof. By Lemmal[5.33] G x H is Oz FP. If L is some finite subgroup, the nor-
maliser Ng L is finite index in Ng, 71 L X Ng,m2L so an application of Shapiro’s
Lemma [Bro94) IT1.(6.5) p.73] gives that for all 1,

Hi(NgL,R[NgL]) = Hn(NGIﬂ'lL X NGQTI'QL,R[N(;lﬂ'lL X NG27T2L])
Noting the isomorphism of RG modules

R[NG17T1L X NG27T2L] = R[NGl’]TlL} & R[NG27T2L]
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The Kiinneth formula for group cohomology (see [Bro94l p.109]) is

0

|

@®,.,_, (H (Ng,m L, R[Ng,m L)) ® H(Ng,m L, R[Ng, m L))

i

Hk(Gl X GQ,R[NGl’]TlL X NG27T2L])

l

@iy jry1 Tori (H'(G1, R[Ng, m L]), H (G2, R[Ng,m2L)))

|

0

Note that here we are using that R[Ng, ;L] is R-free. Since H*(G1, R[Ng,m1L])
is assumed R-flat the Tory term is zero. Hence the central term is non-zero only
when ¢ = n,, 1 and j = ng,r, in which case it is R-flat. If G; and G are
Bredon-Poincaré duality then the central term in this case is R. O

5.3.2 FINITE-BY-DUALITY GROUPS

Throughout this section, F'; G and @) will denote groups in a short exact se-
quence
0—F—G-5Q—0

Where F is finite. This section builds up to the proof of Proposition that

if @ is Bredon duality of dimension n over R, then G is also.

|Lemma 5.36 H'(G, RG) = H(Q, RQ) for all i and any ring R.

Proof. The Lyndon-Hochschild-Serre spectral sequence associated to the ex-
tension is:
H?(Q, H(F, RG)) = H"*(G, RG)
P

RG is projective as a RF-module so by [Bie81l Proposition 5.3, Lemma 5.7],

HY(F,RG) = HY(F, RF) ®g RG:{ Renr RO =RQ g =0 }

The spectral sequence collapses to H'(G, RG) = H (Q, RQ). O

|Lemma 5.37 If Q is Oz FPy, then G is O FPy.

Proof. Let B; for i = 0,...,n be a collection of conjugacy class representatives
of all finite subgroups in Q. Let {B]}; be a collection of conjugacy class rep-
resentatives of finite subgroups in G which project onto B;. Since F is finite
n~1(B;) is finite and there are only finitely many j for each 4, we claim that
these B] are conjugacy class representatives for all finite subgroups in G.
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Let K be some finite subgroup of G, we need to check it is conjugate to some
Bf A = m(K) is conjugate to B;, let ¢ € Q be such that ¢"1Aq = B; and let
g € G be such that m(g) = gq.

(g7 Kg) = ¢ 'Aq = B; so g~ 'Kg is conjugate to some B{ and hence
K is conjugate to some Bf . Since we have already observed that for each
i = 0,...,n the set {BZJ}] is finite, G has finitely many conjugacy classes of
finite subgroups. O

Lemma 5.38 If K is a finite subgroup of G then NgK is finite index in
Ng(mt o nn(K)).

Proof. NgK is a subgroup of Ng(7~! o m(K)) since if g71 Kg = K then
(rtom(g)) (7t om(K)) (7 o 7r(g))71 =n1ton(K)

But ge ntom(g)sog(rton(K)) gt =n""ton(K).

N¢K is the stabiliser of the conjugation action of G on G/K so by the above
can be described as the stabiliser of the action of N (77! o 7(K)) on G/K by
conjugation. But Ng (77! o7(K)) maps K inside 7! o m(K) so NgK is the
stabiliser of N (7~ o 7(K)) on 7' o 7(K)/K.

K is finite, so 7(K) is finite and since the kernel of 7 is finite, 7~ o 7(K) is

finite. Hence the stabiliser must be a finite index subgroup of N (77! o 7(K)).
O

|Lemma 5.39 If L is a subgroup of @ then Nom~!(L) = 7' NgL.
Proof. If g € Ngn~Y(L) then g~ 'n~'(L)g = 7~ !(L) so applying 7 gives

7(g) "' L7(g) = L and thus g € 7' NgL.
Conversely if g € 771 (NgL) then m(g)~'Ln(g) = L so

(v tom(g) 7L (r o m(g)) =7 (L)
Since g € 7t on(g), g7t Y (L)g = 7 L(L). O

Proposition 5.40 If @ is Bredon duality of dimension n over R then G is
Bredon duality of dimension n over R.

Proof. Let K be a finite subgroup of G. We combine Lemma [5.38] and Lemma
5.39| to see that Ng K is finite index in Negm ' om(K) = 7~ (Ngn(K)). Hence

1%

H' (WgK, RWgK]) = H' (NgK, R[N¢K))

(
(771 (Ngm(K)), R [n7! (Nom(K))])
(
(

1

1

Nem(K), R[Nom(K)))

H'
H'
H' (Won(K), R[Wqn(K)))

1%

Where the third isomorphism follows from Lemma [5.36] and the short exact

sequence
1— F — 7! (Non(K)) — Non(K) — 1
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Since () is Bredon duality of dimension n this gives the condition on the
cohomology of the Weyl groups.

G is O FPgy by and OrcdG = Orcd@ = n by [Nuc04, 5.5]. So
by Corollary it remains to show that the Weyl groups of the finite sub-
groups are FP.,. For any finite subgroup K of G, the short exact sequence
above and [Bie81l Proposition 1.4] gives that 7= (Non(K)) is FPs. But, as
discussed at the beginning of the proof, NgK is finite index in Ngn~tom(K) =
71 (Nom(K)), so NgK is FP also. O

Examining the proof above it’s clear that V(G) = V(Q).

5.3.3 Low DIMENSIONAL EXTENSIONS

Proposition 5.41 If NV and @ are Bredon-Poincaré duality of dimension 1 over
Z and there is a short exact sequence

0—N-—>G—Q—0

then G is virtually torsion-free and Bredon-Poincaré duality of dimension 2.

Proof. By Proposition[5.28] N and @ are both virtually-Z in particular they are
FP o soluble groups, so G is virtually torsion free soluble by [Sch78, Theorem 6]
and FP, by [Bie§Il Proposition 1.4]. Proposition completes the proof. [

Schneebeli analyzes in [Sch78] properties necessary for a class of groups C to
have the property that being virtually poly-C is extension closed, or equivalently
that all poly-virtually-C groups are virtual poly-C.

Theorem 5.42 [Sch78, Theorem 4].

Let C be a class of groups, closed under finite index subgroups and containing
the trivial group, and such that every element in C is finitely generated torsion
free. If C has the property that given any @ € C and central extension of @) by
the cyclic group of order p,

1—C,—G—0Q —1
then G is virtually torsion-free, then an extension of the form (virtually C)-by-

(virtually-C) is virtually (C-by-C).

Corollary 5.43 Any extension of a finitely generated virtually-free group by
a finitely generated virtually-free group is finitely generated virtually-(free-by-
free).

Proof. Let C be the class of finitely generated free groups, if @ € C then any
extension
1—C—G—Q—1

necessarily splits, and hence G is virtually torsion-free. Thus we may apply
Theorem [5.421 O
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Corollary 5.44 Extensions of virtual duality groups (equivalently Bredon du-
ality groups) of dimension 1 over R by finite groups, are virtual duality groups
of dimension 1 over R, for any ring R.

Corollary 5.45 An extension of a virtual duality group of dimension 1 over R
by a virtual duality group of dimension 1 over R is virtual duality of dimension
2 over R, for any ring R.

Proof. By Corollary such a group G has finite index subgroup H which
is (finitely generated free)-by-(finitely generated free), H is clearly duality so G
is virtual duality. O

Question 5.46. Are the groups considered in the previous corollary also duality
of dimension 27

5.4 GRAPHS OF GROUPS

In the case of ordinary duality groups, an amalgamated free product of two
duality groups of dimension n over a duality group of dimension n — 1 is duality
of dimension n, similarly an HNN extension of a duality group of dimension n
relative to a duality groups of dimension n — 1 group is duality of dimension
n [Bie81l 9.15]. We cannot hope for such a nice result as the normalisers of
finite subgroups may be badly behaved, however there are some more restrictive
cases where we can get results. For instance using amalgamated free products
of Bredon duality groups we will be able to build Bredon duality groups G with
arbitrary V(G).

We need some preliminary results, showing that a graph of groups is O FP
if all groups involved are O FP. The following Proposition is well known over
Z, see for example [GN12, Lemma 3.2], and the proof extends with no alterations
to arbitrary rings R.

Lemma 5.47 There is an exact sequence, arising from the Bass-Serre tree.

o Hb, (G ) — @ Hb, (GusRes§ZE, )
veV

— @Hé}‘ (Ge,Resgige ) —
ecl

Proof. The resolution of R(—) by projective contravariant modules associated
to the Bass-Serre tree T" of the graph of groups is

0— @R[—,G/Ge] — @R[—,G/GU] — R(—) —0

eckE veV

Giving a long exact sequence,

c— Extly (R(-),?) — @D Bxty, (R[—,G/G.].?)
veV
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— @ Ext, (R[-,G/G.],?) — -+
eckE

However for any subgroup H, using the fact that

ndgZ G R(—) = R[—,G/H|

F

and the adjoint isomorphism between induction and restriction (see Section[L.3)),

Exty,, (R[—,G/H],?) = Ext,, (IndgZ § R(-),?)
= Exty,, (B(—), Resg7 §7)

~ H, (H,?)
Making this substitution in the long exact sequence completes the proof. O

Lemma 5.48 If all vertex groups G, are of type Ox FP,, and all edge groups
G, are of type O FP,,_; over R then G is of type O FP,, over R.

Proof. Let M)(—), for A € A, be a directed system of OxG-modules with

colimit zero, for any subgroup H of G the directed system Resgjf % My (—) also

has colimit zero. The long exact sequence of Lemma [5.47] and the exactness of
colimits gives that for all 4, there is an exact sequence

s lim B (G MA(F) — @D lim H, (GU,Resgg G MA(%)>
AeA veV AEA

— @ lim Ho, (GeResGZE, Mu(#)) — -+
ecE AEA

If i < n then by the Bieri-Eckmann criterion (Theorem [1.28)), the left and right
hand terms vanish, thus the central term vanishes. Another application of the
Bieri-Eckmann criterion gives that G is Oz FP,,. O

Lemma 5.49 If Oz cdr G, < n for all vertex groups G, and Or cdr G, < n—1
for all edge groups G, then Orcdr G < n.
Proof. Use the long exact sequence of Lemma [5.47] O

Lemma 5.50 If there is some integer n such that for all vertex groups G,
and all edge groups G., H'(G,, RG,) is R-flat if i = n and 0 otherwise and
H(G., RG,) is R-flat if i =n — 1 and 0 else, then H'(G, RG) is R-flat if i = n
and 0 else.

Proof. The Mayer-Vietoris sequence associated to the graph of groups is

- — HY(G,RG) — P H' (G, RG) — P H? (G, RG) — - -
veV eckE

H?(G,,RG) = HY(G,, RG,) ®rc, RG by |Bie8ll, Proposition 5.4] so we have

HYG,RG)=0for g #n
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and a short exact sequence

0— P H" (G, RG.) ®ra, RG — H™(G, RG) (%)
ecE

— P H"(G., RG,) ®re, RG — 0
veV

Finally, extensions of flat modules by flat modules are flat (use, for example,
the long exact sequence associated to Torfc). O

Remark 5.51. Note that, in the lemma above, if H"(G,RG,) = R and
H" (G, RG.) = R for all vertex and edge groups then H"(G, RG) will not
be isomorphic to R. This is immediate from the short exact sequence ().

Lemma 5.52 Let G be the fundamental group of a graph of groups Y. If K
is a subgroup of the vertex group G, and K is not subconjugate to any edge
group then NgK = Ng K.

Proof. The normaliser Ng K acts on the K-fixed points of the Bass-Serre tree
of (G,Y), but only a single vertex is fixed by K, so necessarily N K < G,. O

Example 5.53. Let S,, denote the star graph of n+ 1 vertices - a single central
vertex vy, and a single edge connecting every other vertex v; to the central
vertex. Let G be the fundamental group of the graph of groups on S,,, where
the central vertex group Gy is torsion-free duality of dimension n, the edge
groups are torsion-free duality of dimension n — 1 and the remaining vertex
groups G; are Bredon duality of dimension n with H"(G, RG) # 0.

By Lemmas and G is O FP,, of dimension n, so to prove it
is Bredon duality it suffices to check the cohomology of the Weyl groups of
the finite subgroups. Any non-trivial finite subgroup is subconjugate to a
unique vertex group G;, and cannot be subconjugate to an edge group since
they are assumed torsion-free. If K is a subgroup of G; then by Lemma [5.52]
HY(NgK, RINgK]) = H'(Ng, K, R[Ng, K]) and the condition follows as G; was
assumed to be Bredon duality. Finally, for the trivial subgroup we must calcu-
late H'(G, RG), which is Lemma [5.50}

V(@) is easily calculable too,
V(G)=V(G1)V---VV(G,)
Where V denotes the binary “or” operation.

Specialising the above example:

Example 5.54. A Bredon duality group with prescribed V(G).

Let ¥V = {vy,...,v} € {0,1,...,n — 1} be given. We specialise the above
example. Choosing G; = Z" x Zy as in Example so that V(G;) = v;, let
Go = Z", let the edge groups be Z"~!, and choose injections Z"~! — Z" and
7"l — Z™ x Zsy from the edge groups into the vertex groups. Then form the
graph of groups as in the previous example to get, for G the fundamental group
of the graph of groups,

V(G) = {’Ul7 N ,’Ut}
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5.5 Questions

Remark 5.55. Because of Remark[5.51] the groups constructed in the example
above will not be Bredon Poincaré duality groups. Thus Question asking if
it is possible to construct Bredon Poincaré duality groups with prescribed V(G)
is still open.

5.5 (QUESTIONS

Collected here are some of the questions relating to duality groups mentioned
throughout this section.

In Example Bredon duality groups with arbitrary V(G) are constructed,
but the situation is more difficult for Bredon Poincaré duality groups. Examples
and[5.11] provide more examples of possible vectors V(G), including V(G) =
{i} for any integer i. However we are still unable to construct, for example,
vectors of the form {i,j} for arbitrary integers i # j.

Question Is it possible to construct Bredon Poincaré duality groups with
prescribed V(G)?

Whether groups of type O FP, with cdg G # Orcd G exist is still un-
known, but since being Bredon duality is stronger than Oz FP, the following
may be easier to answer:

Question Is it always true that n = niq?

Wall’s conjecture asks if every finitely presented Poincaré duality group over
Z admits a manifold model for BG [Wal79].

Question Do all finitely presented Bredon-Poincaré duality groups over Z
admit cocompact manifold models M for Eg;, G, where for each finite subgroup
H the fixed point set M* is a submanifold?

Question [5.23]l Do we have restrictions on the possible values of ny as in
Remark [5.22] for polycyclic groups, but for arbitrary Bredon-Poincaré duality
groups.

The next question is related to Question which asks if there is a nice
characterisation of the condition Oz cdg G = 1.

Question What characterises Bredon-duality groups of dimension 1 over
R?

We show in Proposition that, in dimension 2, the conditions virtually
Poincare duality over Z and Bredon poincare duality over Z are equivalent, and
describe an example of Schneebeli of a Bredon duality group over Z which is
not virtually torsion-free, and hence not virtually duality [Sch78].

Question Do there exist virtual duality groups of dimension 2 which are
not Bredon duality? What is the lowest dimension for which such an example
can exist?
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