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Models for EG

Let G be a discrete group.

Definition
A model for EG is a G -CW complex X where

1. G acts properly and cellularly on X .

2. XH is contractible for all finite subgroups H ≤ G .

Models for EG are unique up to G -homotopy equivalence.



Models for EG
Examples

1. If G is torsion free, a model for EG is the universal cover of a
K (G , 1).

2. If G is finite, a model for EG is a point.

3. If G = (Z /2Z) ∗ (Z /2Z), the infinite dihedral group, then a
model for EG is the real line.



Kropholler–Mislin conjecture

Definition

1. gd G is the minimal dimension of a model for EG .

2. nG is the minimal dimension of a proper contractible G -CW
complex.

Clearly nG ≤ gd G .

Conjecture (Kropholler–Mislin)

nG <∞⇒ gd G <∞

Theorem (Lück)

nG <∞⇒ gd G <∞ for groups with bounded lengths of chains
of finite subgroups.



Bredon cohomology
The algebraic side of models for EG

Let OF be the category

Objects(OF) = {G/H : H a finite subgroup of G }

MorphismsOF
(G/H,G/K ) = {G -maps G/H → G/K}

A Bredon module is a contravariant functor from OF into abelian
groups.

I Bredon modules form an abelian category.

I Morphisms between Bredon modules are natural
transformations.

I One can define projective Bredon modules.



Bredon cohomology
The algebraic side of models for EG

One can define

Hn
OF

(G ,M) = Hn HomBredon(P∗,M)

where

1. P∗ is a projective resolution of the constant Bredon module Z,

Z(G/H) = Z

Z(G/H
α→ G/K ) = idZ

2. M is any Bredon module.



Bredon cohomological dimension
The algebraic side of gdG

Definition

cd G = max{n : Hn
OF

(G ,M) 6= 0 for some Bredon module M}.

Theorem (Dunwoody, Lück–Meintrup)

cd G = gd G except possibly cd G = 2 and gd G = 3.

Example (Brady–Leary–Nucinkis)

There exist groups with cd G = 2 and gd G = 3.



FPn conditions
The algebraic side of finite-type models for EG

Definition
A model for EG is finite-type if it has finitely many G -orbits of
cells in each dimension.

Definition
We say G is FPn if there is a resolution of projective Bredon
modules

· · · → Pi → · · · → P0 → Z

where Pi is finitely generated for all i ≤ n.

Theorem (Lück–Meintrup)

There is a finite-type model for EG if and only if G is FP∞ and
NGH/H is finitely presented for all finite H ≤ G .



F-cohomology
The algebraic side of nG?

A short exact sequence of ZG -modules

0→ A→ B → C → 0 (?)

is F-split if it splits when restricted to ZH for any finite subgroup
H. A ZG -module P is F-projective if

0→ Hom(P,A)→ Hom(P,B)→ Hom(P,C )→ 0

is exact for all F-split (?).

Example

Z[G/H] is F-projective for H any finite subgroup of G .



F-cohomological dimension
The algebraic side of nG?

Definition (Nucinkis)

The F-cohomological dimension Fcd G is the minimum length of
an F-split resolution of Z by F-projectives.

Proposition (Bouc, Kropholler–Wall)

The cellular chain complex of any proper contractible G -CW
complex is F-split.

Corollary

Fcd G ≤ nG

We know of no example where nG 6= Fcd G .



Algebraic Invariants

{Mackey functors}
Induction //

Restriction

��

{cohomological Mackey functors}
Restriction

nn

Restriction

vv
{Bredon modules}

Induction

\\

Induction

66



Mackey functors

Example

1. Representations ρ : G → GLn(R).

2. Group (co)homology Hn(G ,M) and Hn(G ,M).

3. K -Theory of group rings K0(ZG ).

4. Fixed points M− of a ZG -module.

All possess induction, restriction, and conjugation.



Mackey functors

A Mackey functor is a map

M : {G/H : H a finite subgroup of G} → {abelian groups}

with maps (for all finite subgroups K ≤ H of G and all g ∈ G )

1. IndH
K : M(G/K )→ M(G/H),

2. ResHK : M(G/H)→ M(G/K ),

3. cg = cg ,H : M(G/Hg )→ M(G/H).

Such that for all finite subgroups J ≤ K ≤ H

1. IndH
H = ResHH = ch,H = id for all h ∈ H.

2. ResKJ ◦ResHK = ResHJ and IndH
K ◦ IndK

J = IndH
J .

3. cgch = cgh for all g , h ∈ G .

4. ResHK ◦cg = cg ResH
g

Kg and IndH
K ◦cg = cg ◦ IndHg

Kg .

5. ResHJ ◦ IndH
K =

∑
x∈J\H/K

IndJ
J∩K x−1 ◦cx ◦ ResKJx∩K .



Mackey functors as Bredon modules
Let M be a Mackey functor and

α : G/H → G/K

H 7→ gK

a G -map, then M is a Bredon module by defining M(α) to be the
composition

M(G/K )
ResKHg→ M(G/Hg )

cg→ M(G/H).

Definition

cdMackey G = max{n : Hn
OF

(G ,M) 6= 0 for M some Mackey functor}

For all groups G ,
cdMackey G ≤ cd G .



FcdG ≤ cdMackey G

Theorem (Mart́ınez-Pérez–Nucinkis)

Fcd G = max{n : Hn
OF

(G ,M−) 6= 0}

where M− is the fixed point functor of some ZG -module, ie.

M−(G/H) = MH .

Corollary

Fcd G ≤ cdMackey G



Mackey cohomological dimension

Theorem (Mart́ınez-Pérez–Nucinkis)

For any group G and Mackey functor M

Hn
OF

(G ,M)
(

= H∗HomBredon(P∗,M)
)

= H∗HomMackey(Q∗,M)

where Q∗ is a projective resolution of the Burnside functor BG by
Mackey functors.

The proof is by inducing a projective resolution of Bredon modules
to a projective resolution of Mackey functors.

Theorem (Mart́ınez-Pérez–Nucinkis)

For any virtually torsion-free group G ,

Fcd G = cdMackey G = vcd G .



Cohomological Mackey functors

A Mackey functor is cohomological if for all finite subgroups
K ≤ H of G

IndH
K ◦ResHK = (m 7→ |H : K |m).

Example

1. Group cohomology Hn(G ,M).

2. Fixed point functors M−, for any ZG -module M.



Cohomological Mackey functors
Yoshida’s description

Yoshida showed cohomological Mackey functors can be described
as contravariant functors

HF → {abelian groups}

where

Objects(HF) = {G/H : H a finite subgroup of G}

MorphismsHF
(G/H,G/K ) = HomZG (Z[G/H],Z[G/K ])

If K ≤ H then ResHK corresponds to projection

Z[G/K ]→ Z[G/H]

and IndH
K corresponds to

Z[G/H]→ Z[G/K ]

H 7→
∑

h∈H/K

hK



Cohomological Mackey functors
Free modules

I Cohomological Mackey functors form an abelian category.

I Morphisms between cohomological Mackey functors are
natural transformations.

Example

If H is a finite subgroup of G , the cohomological Mackey functor
Z[G/H]− is free.



Cohomological Mackey functors

Theorem (S)

For any group G and cohomological Mackey functor M

Hn
OF

(G ,M)
(

= H∗HomBredon(P∗,M)
)

= H∗HomcoMack(Q∗,M)

where Q∗ is a projective resolution of the fixed point functor Z− by
cohomological Mackey functors.

The proof is via inducing a projective Bredon module resolution of
Z to a projective cohomological Mackey functor resolution of Z−.
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Cohomological Mackey functors

cdcoMack G = max{n : Hn
OF

(G ,M) 6= 0 for M some

cohomological Mackey functor.}

Or, cdcoMack G is the minimum length of a projective resolution of
Z− by cohomological Mackey functors.

Theorem (S)

Fcd G = cdcoMack G

Proof idea:

1. Evaluating a free cohomological Mackey functor Z[G/H]− at
G/1 gives an F-projective module.

2. To see Fcd G ≤ cdcoMack G we must check that evaluating at
G/1 gives an F-split resolution.

3. For the other direction we use a result of Gandini, giving an
F-split resolution of Z by modules of the form Z[G/H].



Questions

Fcd G = cdcoMack G ≤ cdMackey G ≤ cd G ≤ gd G

Theorem (Degrijse)

For groups with bounded lengths of chains of finite subgroups,

cdMackey G = cdcoMack G .

Question

1. Is cdMackey G = cdcoMack G ?

2. Are nG and cdMackey G connected?



Group Extensions

Let
1→ N → G → Q → 1 (?)

be a short exact sequence of groups.

Proposition (S)

If cdcoMack G <∞ then

cdcoMack G ≤ cdcoMack N + cdcoMack Q.

Theorem (Degrijse)

If there is a group extension (?) for which cdcoMack fails to be
sub-additive then there is a group extension (?) with N a finite
group for which it fails to be subadditive.



FPn conditions

Definition

1. G is Mackey-FPn if there is a projective resolution P∗ of BG

by Mackey functors with Pi finitely generated for all i ≤ n.

2. G is coMack-FPn if there is a projective resolution P∗ of Z−
by cohomological Mackey functors with Pi finitely generated
for all i ≤ n.

Theorem (S)

1. G is Mackey-FPn if and only if G is FPn.

2. G is coMack-FPn if and only if G is FFPn.



Questions

If G acts properly on a contractible G -CW complex with finitely
many orbits of cells in each dimension then G is FFP∞,
equivalently coMack-FP∞.

Question
If G is coMack-FP∞ then does G act properly on a contractible
G -CW complex with finitely many orbits of cells in each dimension?


