Proper actions and Mackey functors

Simon St. John-Green

University of Southampton

March 14, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Let G be a discrete group.

Definition

A model for $\underline{E}G$ is a G-CW complex X where

- 1. G acts properly and cellularly on X.
- 2. X^H is contractible for all finite subgroups $H \leq G$.

Models for $\underline{E}G$ are unique up to G-homotopy equivalence.

- 1. If G is torsion free, a model for $\underline{E}G$ is the universal cover of a K(G, 1).
- 2. If G is finite, a model for $\underline{E}G$ is a point.
- If G = (ℤ /2ℤ) * (ℤ /2ℤ), the infinite dihedral group, then a model for EG is the real line.

Kropholler-Mislin conjecture

Definition

- 1. gd G is the minimal dimension of a model for $\underline{E}G$.
- 2. n_G is the minimal dimension of a proper contractible *G*-CW complex.

Clearly $n_G \leq \underline{\mathrm{gd}} G$.

Conjecture (Kropholler-Mislin)

$$n_G < \infty \Rightarrow \underline{\mathsf{gd}} \ G < \infty$$

Theorem (Lück)

 $n_G < \infty \Rightarrow \underline{gd} \ G < \infty$ for groups with bounded lengths of chains of finite subgroups.

Bredon cohomology

The algebraic side of models for $\underline{E}G$

Let $\mathcal{O}_{\mathfrak{F}}$ be the category

 $Objects(\mathcal{O}_{\mathfrak{F}}) = \{G/H : H \text{ a finite subgroup of } G \}$

 $\mathsf{Morphisms}_{\mathcal{O}_{\mathfrak{X}}}(G/H, G/K) = \{G \text{-maps } G/H \to G/K\}$

A Bredon module is a contravariant functor from $\mathcal{O}_{\mathfrak{F}}$ into abelian groups.

- Bredon modules form an abelian category.
- Morphisms between Bredon modules are natural transformations.
- One can define projective Bredon modules.

Bredon cohomology

The algebraic side of models for $\underline{E}G$

One can define

$$H^n_{\mathcal{O}_{\mathfrak{F}}}(G,M) = H^n \operatorname{Hom}_{\operatorname{Bredon}}(P_*,M)$$

where

1. P_* is a projective resolution of the constant Bredon module $\underline{\mathbb{Z}}$,

 $\underline{\mathbb{Z}}(G/H) = \mathbb{Z}$

$$\underline{\mathbb{Z}}(G/H \stackrel{\alpha}{\rightarrow} G/K) = \mathsf{id}_{\mathbb{Z}}$$

2. *M* is any Bredon module.

Bredon cohomological dimension

The algebraic side of $\underline{gd} G$

Definition

 $\underline{cd} G = \max\{n : H^n_{\mathcal{O}_{\mathfrak{X}}}(G, M) \neq 0 \text{ for some Bredon module } M\}.$

Theorem (Dunwoody, Lück–Meintrup) $\underline{cd} G = \underline{gd} G$ except possibly $\underline{cd} G = 2$ and $\underline{gd} G = 3$.

Example (Brady–Leary–Nucinkis) There exist groups with $\underline{cd} G = 2$ and $\underline{gd} G = 3$.

$\underline{\mathsf{FP}}_n$ conditions

The algebraic side of finite-type models for $\underline{E}G$

Definition

A model for $\underline{E}G$ is finite-type if it has finitely many *G*-orbits of cells in each dimension.

Definition

We say G is \underline{FP}_n if there is a resolution of projective Bredon modules

$$\dots \to P_i \to \dots \to P_0 \to \underline{\mathbb{Z}}$$

where P_i is finitely generated for all $i \leq n$.

Theorem (Lück–Meintrup)

There is a finite-type model for $\underline{E}G$ if and only if G is \underline{FP}_{∞} and N_GH/H is finitely presented for all finite $H \leq G$.

\mathfrak{F} -cohomology The algebraic side of n_G ?

A short exact sequence of $\mathbb Z$ G-modules

$$0 \to A \to B \to C \to 0 \tag{(*)}$$

is \mathfrak{F} -split if it splits when restricted to $\mathbb{Z} H$ for any finite subgroup H. A $\mathbb{Z} G$ -module P is \mathfrak{F} -projective if

$$0 \rightarrow \operatorname{Hom}(P, A) \rightarrow \operatorname{Hom}(P, B) \rightarrow \operatorname{Hom}(P, C) \rightarrow 0$$

is exact for all \mathfrak{F} -split (*).

Example

 $\mathbb{Z}[G/H]$ is \mathfrak{F} -projective for H any finite subgroup of G.

\mathfrak{F} -cohomological dimension

The algebraic side of n_G ?

Definition (Nucinkis)

The \mathfrak{F} -cohomological dimension \mathfrak{F} cd G is the minimum length of an \mathfrak{F} -split resolution of \mathbb{Z} by \mathfrak{F} -projectives.

Proposition (Bouc, Kropholler–Wall)

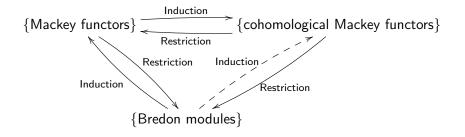
The cellular chain complex of any proper contractible G-CW complex is $\mathfrak{F}\text{-split}.$

Corollary

$$\operatorname{\mathfrak{F}cd} G \leq n_G$$

We know of no example where $n_G \neq \mathfrak{F}cd G$.

Algebraic Invariants



イロト 不得 トイヨト イヨト

э

Mackey functors

Example

- 1. Representations $\rho : G \to GL_n(\mathbb{R})$.
- 2. Group (co)homology $H^n(G, M)$ and $H_n(G, M)$.
- 3. *K*-Theory of group rings $K_0(\mathbb{Z} G)$.
- 4. Fixed points M^- of a \mathbb{Z} *G*-module.

All possess induction, restriction, and conjugation.

Mackey functors

A Mackey functor is a map

 $M : \{G/H : H \text{ a finite subgroup of } G\} \rightarrow \{\text{abelian groups}\}$

with maps (for all finite subgroups $K \leq H$ of G and all $g \in G$)

1.
$$\operatorname{Ind}_{K}^{H}: M(G/K) \to M(G/H),$$

2.
$$\operatorname{Res}_{K}^{H}: M(G/H) \to M(G/K),$$

3.
$$c_g = c_{g,H} : M(G/H^g) \to M(G/H).$$

Such that for all finite subgroups $J \leq K \leq H$

1.
$$\operatorname{Ind}_{H}^{H} = \operatorname{Res}_{H}^{H} = c_{h,H} = \operatorname{id}$$
 for all $h \in H$.
2. $\operatorname{Res}_{J}^{K} \circ \operatorname{Res}_{K}^{H} = \operatorname{Res}_{J}^{H}$ and $\operatorname{Ind}_{K}^{H} \circ \operatorname{Ind}_{J}^{K} = \operatorname{Ind}_{J}^{H}$.
3. $c_{g}c_{h} = c_{gh}$ for all $g, h \in G$.
4. $\operatorname{Res}_{K}^{H} \circ c_{g} = c_{g} \operatorname{Res}_{K^{g}}^{H^{g}}$ and $\operatorname{Ind}_{K}^{H} \circ c_{g} = c_{g} \circ \operatorname{Ind}_{K^{g}}^{H^{g}}$.
5. $\operatorname{Res}_{J}^{H} \circ \operatorname{Ind}_{K}^{H} = \sum_{x \in J \setminus H/K} \operatorname{Ind}_{J \cap K^{x-1}}^{J} \circ c_{x} \circ \operatorname{Res}_{J^{x} \cap K}^{K}$.

Mackey functors as Bredon modules

Let M be a Mackey functor and

$$\alpha: G/H \to G/K$$
$$H \mapsto gK$$

a G-map, then M is a Bredon module by defining $M(\alpha)$ to be the composition

$$M(G/K) \stackrel{\operatorname{\mathsf{Res}}_{H^g}}{\to} M(G/H^g) \stackrel{c_g}{\to} M(G/H).$$

Definition

 $\underline{cd}_{Mackey} G = \max\{n : H^n_{\mathcal{O}_{\mathfrak{F}}}(G, M) \neq 0 \text{ for } M \text{ some Mackey functor}\}$

For all groups G,

$$\underline{\operatorname{cd}}_{\operatorname{Mackey}} G \leq \underline{\operatorname{cd}} G.$$

$\operatorname{\mathfrak{F}cd} G \leq \operatorname{\underline{cd}}_{\operatorname{Mackey}} G$

Theorem (Martínez-Pérez-Nucinkis)

$$\mathfrak{F}cd \ G = \max\{n : H^n_{\mathcal{O}_{\mathfrak{F}}}(G, M^-) \neq 0\}$$

where M^- is the fixed point functor of some \mathbb{Z} G-module, ie.

$$M^{-}(G/H)=M^{H}.$$

Corollary

$$\mathfrak{F}cd \ G \leq \underline{cd}_{\mathsf{Mackey}} \ G$$

Mackey cohomological dimension

Theorem (Martínez-Pérez–Nucinkis) For any group G and Mackey functor M

$$egin{aligned} & H^n_{\mathcal{O}_{\widetilde{\mathcal{S}}}}(G,M) \quad \left(= H^* \operatorname{Hom}_{Bredon}(P_*,M)
ight) \ &= H^* \operatorname{Hom}_{Mackey}(Q_*,M) \end{aligned}$$

where Q_* is a projective resolution of the Burnside functor B^G by Mackey functors.

The proof is by inducing a projective resolution of Bredon modules to a projective resolution of Mackey functors.

Theorem (Martínez-Pérez-Nucinkis)

For any virtually torsion-free group G,

$$\mathfrak{F}cd \ G = \underline{cd}_{Mackey} \ G = vcd \ G.$$

A Mackey functor is cohomological if for all finite subgroups $K \leq H$ of G $\operatorname{Ind}_{K}^{H} \circ \operatorname{Res}_{K}^{H} = (m \mapsto |H : K|m).$

Example

- 1. Group cohomology $H^n(G, M)$.
- 2. Fixed point functors M^- , for any $\mathbb{Z} G$ -module M.

Yoshida's description

Yoshida showed cohomological Mackey functors can be described as contravariant functors

 $\mathcal{H}_{\mathfrak{F}} \to \{ \text{abelian groups} \}$

where

 $\begin{aligned} \text{Objects}(\mathcal{H}_{\mathfrak{F}}) &= \{G/H : \ H \text{ a finite subgroup of } G\} \\ \text{Morphisms}_{\mathcal{H}_{\mathfrak{F}}}(G/H, G/K) &= \text{Hom}_{\mathbb{Z}|G}(\mathbb{Z}[G/H], \mathbb{Z}[G/K]) \end{aligned}$ If $K \leq H$ then Res_{K}^{H} corresponds to projection $\mathbb{Z}[G/K] \rightarrow \mathbb{Z}[G/H] \end{aligned}$

and $\operatorname{Ind}_{K}^{H}$ corresponds to

$$\mathbb{Z}[G/H] o \mathbb{Z}[G/K]$$

 $H \mapsto \sum_{h \in H/K} hK$

Free modules

- Cohomological Mackey functors form an abelian category.
- Morphisms between cohomological Mackey functors are natural transformations.

Example

If H is a finite subgroup of G, the cohomological Mackey functor $\mathbb{Z}[G/H]^-$ is free.

Theorem (S)

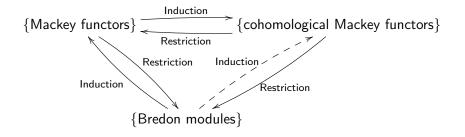
For any group G and cohomological Mackey functor M

$$H^{n}_{\mathcal{O}_{\mathfrak{F}}}(G, M) \quad \left(= H^{*} \operatorname{Hom}_{Bredon}(P_{*}, M) \right)$$
$$= H^{*} \operatorname{Hom}_{coMack}(Q_{*}, M)$$

where Q_* is a projective resolution of the fixed point functor \mathbb{Z}^- by cohomological Mackey functors.

The proof is via inducing a projective Bredon module resolution of $\underline{\mathbb{Z}}$ to a projective cohomological Mackey functor resolution of \mathbb{Z}^- .

Interactions



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

 $\underline{cd}_{coMack} G = \max\{n : H^n_{\mathcal{O}_{\mathfrak{F}}}(G, M) \neq 0 \text{ for } M \text{ some} \}$

cohomological Mackey functor.}

Or, $\underline{cd}_{coMack} G$ is the minimum length of a projective resolution of \mathbb{Z}^- by cohomological Mackey functors.

Theorem (S)

$$\mathfrak{F}cd \ G = \underline{cd}_{coMack} \ G$$

Proof idea:

- Evaluating a free cohomological Mackey functor Z[G/H][−] at G/1 gives an 𝔅-projective module.
- 2. To see $\operatorname{\mathfrak{F}cd} G \leq \underline{cd}_{\operatorname{coMack}} G$ we must check that evaluating at G/1 gives an $\operatorname{\mathfrak{F}split}$ resolution.
- 3. For the other direction we use a result of Gandini, giving an \mathfrak{F} -split resolution of \mathbb{Z} by modules of the form $\mathbb{Z}[G/H]$.

Questions

$$\mathfrak{F}cd \ G = \underline{cd}_{coMack} \ G \leq \underline{cd}_{Mackey} \ G \leq \underline{cd} \ G \leq \underline{gd} \ G$$

Theorem (Degrijse)

For groups with bounded lengths of chains of finite subgroups,

$$\underline{\operatorname{cd}}_{Mackey} G = \underline{\operatorname{cd}}_{coMack} G.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Question

Is <u>cd</u>_{Mackey} G = <u>cd</u>_{coMack} G?
 Are n_G and <u>cd</u>_{Mackey} G connected?

Group Extensions

Let

$$1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$$
 (*)

be a short exact sequence of groups.

Proposition (S)

If
$$\underline{\operatorname{cd}}_{\operatorname{coMack}} \mathit{G} < \infty$$
 then

$$\underline{\operatorname{cd}}_{\operatorname{coMack}} G \leq \underline{\operatorname{cd}}_{\operatorname{coMack}} N + \underline{\operatorname{cd}}_{\operatorname{coMack}} Q.$$

Theorem (Degrijse)

If there is a group extension (\star) for which \underline{cd}_{coMack} fails to be sub-additive then there is a group extension (\star) with N a finite group for which it fails to be subadditive.

$\underline{\mathsf{FP}}_n$ conditions

Definition

- 1. *G* is Mackey- \underline{FP}_n if there is a projective resolution P_* of B^G by Mackey functors with P_i finitely generated for all $i \leq n$.
- G is coMack-<u>FP</u>_n if there is a projective resolution P_{*} of Z⁻ by cohomological Mackey functors with P_i finitely generated for all i ≤ n.

Theorem (S)

- 1. G is Mackey- \underline{FP}_n if and only if G is \underline{FP}_n .
- 2. G is coMack-<u>FP</u>_n if and only if G is \mathfrak{FP}_n .

Questions

If G acts properly on a contractible G-CW complex with finitely many orbits of cells in each dimension then G is \mathfrak{FP}_{∞} , equivalently coMack-<u>FP</u> $_{\infty}$.

Question

If G is coMack- \underline{FP}_{∞} then does G act properly on a contractible G-CW complex with finitely many orbits of cells in each dimension?