
Techniques for Calculating the Hausdorff Dimension of Fractal Sets

Generated by Iterated Function Schemes

Simon St. John-Green, University of Warwick

March 30, 2011

Contents

0 Introduction 2

1 Foundations 2
1.1 Measures and Pre-Measures on Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Constructing Hausdorff Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Box-Counting Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Mass Distribution Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Thermodynamic Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Sequence Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Subshifts of Finite Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 Iterated Function Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.9 Measures on Sequence Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Self-Similar Sets 12
2.1 The Open Set Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Sub-Self-Similar Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Subshifts of Finite Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Self-Affine Sets 19
3.1 The Singular Value Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Falconer’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Remarks on Falconer’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Quasi-Self-Similar Sets 27
4.1 Implicitly Calculating the Hausdorff Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Dynamical Repellers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Locally Expanding Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Bowen’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Iteration of Holomorphic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Classification of Quasi-Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Remarks about the Figures 36

1



1 FOUNDATIONS

0 Introduction

As objects to be studied mathematically, fractals defy definition. Falconer[1] calls a set F a fractal if it satisfies
the following conditions:

1. F has a fine structure.
2. F is too irregular (both locally and globally) to be defined in regular geometric language.
3. F usually contains some self-similarity.
4. F is usually defined in a simple fashion (eg. recursively).

These sorts of objects arise often both in nature and in other areas of mathematics. Many attractors of dynamical
systems for example have fractal properties. We are interested here in the size or dimension of fractal sets. The
idea of dimension is similarly hard to define, but roughly speaking we want to associate a real number dimF to
our fractal sets which measures the ’space’ taken up by F in small sets around its points. We can write down
a short wish list of properties that would be useful for any notion of dimension:

1. dimF = n if F is an n-dimensional manifold.
2. dimF1 ≤ dimF2 if F1 ⊆ F2.
3. The dimension is unaffected by adding or subtracting ’small’ sets, for example countable sets of points in

Rn.

The topological dimension (or Lebesgue covering dimension) may seem like a good start. It is defined by the
minimal value of n such that every finite open cover has a finite sub-cover with no point contained in more
that n + 1 elements. While it does satisfy these properties it does not really capture the whole picture. For
example consider the cantor set C, obtained recursively by starting with the unit interval [0, 1] and removing
the middle third to give C1, then removing the middle third of the two intervals that are left to give C2 and so
on. If we calculate the topological dimension of this we find it is 0 (this follows since the cantor set is totally
disconnected). However it is clearly not a ’small’ set, for a start it is uncountable. Trying to use Lebesgue
measure as a starting point is similarly unhelpful, the Lebesgue measure of the cantor set is also 0. The notion

Figure 1: The Cantor Set

of dimension most commonly used is that of Hausdorff dimension, first thought of by Felix Hausdorff in the
1930s. He built on Carathéodory’s ideas about constructing measures. The properties of Hausdorff dimension
were then expanded on by his students, most notably Bescovitch. Hausdorff dimension satisfies the properties
on our wishlist, as will be shown in more detail when it is defined later. The main problem with Hausdorff
dimension is it can be fairly hard to calculate in general, most of the techniques discussed here involve placing
restrictions on the construction of F in order to obtain useful estimates. Some other notions of dimension have
been developed which are easier to calculate, such as box-counting dimension, packing dimension and Fourier
dimension but these mostly do not satisfy the third wish in our wish list, and such are much less useful. A
discussion of these can however be found in Falconer[1].
This report will start with some foundational material, starting with a couple of methods of constructing
measures, moving on to the definition of Hausdorff dimension, a couple of basic methods of estimating it and
some more interesting methods that can be used to estimate invariant sets of collections of functions (iterated
function systems). Some techniques for implicitly calculating the Hausdorff dimension will be discussed and
finally a quick look at classification of quasi-circles, a class of fractals which arise naturally as the Julia sets of
some quadratic functions. The reader should skip any initial sections which are already familiar, as results from
these can always be referred back to later.

1 Foundations

Much of the later material will rely on constructing measures in the two following ways and as the Hausdorff
dimension also follows from these constructions it seems a natural place to start.

1.1 Measures and Pre-Measures on Metric Spaces

I will give two methods to construct a measure from a pre-measure in a general metric space, both of which
will come in useful later on, when we need to work with both sequence spaces and with Rn. These are called
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1 FOUNDATIONS 1.1 Measures and Pre-Measures on Metric Spaces

Method I and Method II by Rogers[8]. (X, d) will always denote a general metric space, and the diameter of
U ⊂ X with respect to d will be denoted by |U | := supx,y∈U d(x, y).

Definition 1.1. If (X, d) is a metric space, say a function τ on some class C of subsets of X is a pre-measure,
if

1. ∅ ∈ C and τ(∅) = 0
2. 0 ≤ τ(C) ≤ +∞ for all C ∈ C

Here I will say that a set function µ : X → R≥0 is a countably sub-additive measure if it satisfies all the usual
axioms, including µ(∪∞i=0Fi) ≤

∑∞
i=0 µ(Fi). This function is called a measure (or countably additive measure) if

this inequality can be improved to equality. The reader should recall the standard result from measure theory
that for any countably sub-additive measure µ, the set of µ-measurable sets in X form a σ-algebra, and that µ
restricted to this σ-algebra is a (countably additive) measure.

Lemma 1.2. METHOD I
If τ is a pre-measure on some class C of subsets of X, then the following is a countably sub-additive measure
on X:

µ(F ) = inf

{ ∞∑
i=0

τ(Ui) : Ui ∈ C , F ⊆ ∪∞i=0Ui

}
Proof. (1) 0 ≤ τ(C) ≤ ∞ ∀C ∈ C, so clearly 0 ≤ µ(F ) ≤ ∞ ∀E ⊆ X

(2) µ(∅) = 0 is clear as the empty set has diameter zero.
(3) If F1 ⊆ F2, then any cover of F2 is a cover of F1, giving µ(F1) ≤ µ(F2).
(4) It remains to prove for some collection {Fi}∞i=0, we have µ(∪∞i=0Fi) ≤

∑∞
i=0 µ(Fi). The result is clearly

trivial if
∑∞
i=0 µ(Fi) =∞, so assume it is finite, and hence that µ(Fi) is finite for each i. Now given some

ε > 0, choose a cover {Cij}∞j=0 of Fi with sets from C, such that
∑∞
j=0 τ(Cij) ≤ µ(Fi) + ε · 2−i. Now,

µ

( ∞⋃
i=0

Fi

)
≤
∑
i,j

τ(Cij) ≤
∞∑
i=0

µ(Fi) + ε · 2−i =

∞∑
i=0

(Fi) + 2ε

As ε was arbitrary, this gives the required result.

Unfortunately, Borel sets are not in general measurable with respect to measures from Method I constructions.
Since this is such a useful property most of the measures we use will be constructed using the method below,
which is in some sense a refinement of Method I.
Method II restricts the covers allowed to those with diameter at most δ. We will take a family of such measures
(one for each δ), and then take the supremum. Since it is easy to construct a measure using a supremum over
a family of measures in generality, I will give this as a lemma.

Lemma 1.3. If {µi}i∈I is a family of countably sub-additive measures on X over some indexing set I, then
µ(F ) = supi∈I µi(F ) is a countably sub-additive measure on X

Proof. (1) 0 ≤ µ(F ) ≤ ∞ ∀F ⊆ X and µ(∅) = 0 are clear.
(2) If F1 ⊆ F2 ⊆ X, then µ(F1) = supi∈I µi(F1) ≤ supi∈I µi(F2) = µ(F2)
(3) If {Fj}∞j=0 are subsets of X, then:

µ

 ∞⋃
j=0

Fj

 = sup
i∈I

µi

 ∞⋃
j=0

Fj

 ≤ sup
i∈I

∞∑
j=0

µi(Fj) ≤
∞∑
j=0

µ(Fj) =

∞∑
j=0

µ(Fj)

Lemma 1.4. METHOD II
If τ is a pre-measure on C, then µ(F ) = supδ>0 µδ(F ) is an outer measure on X, where

µδ(F ) = inf

{ ∞∑
i=0

τ(Ui) : Ui ∈ C , F ⊆
∞⋃
i=0

Ui , |Ui| < δ ∀i

}

Proof. Write Cδ = {U ∈ C : |U | < δ}, and write τδ for the restriction of τ to Cδ, it is clear that τδ is a pre-
measure. Now µδ(F ) = inf{

∑∞
i=0 τδ(Ui) : Ui ∈ Cδ , F ⊂ ∪∞i=0Ui}, which is a countably sub-additive measure

by Method I (Lemma 1.2), and µ is a countably sub-additive measure by Lemma 1.3.
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1 FOUNDATIONS 1.2 Constructing Hausdorff Dimension

Notice that as δ decreases, the set of admissible δ covers decreases, and hence µδ increases. So we could replace
the definition of µ by µ(F ) = limδ→0 µδ(F ). Measures constructed in this fashion are often called measures of
Hausdorff type.
Recall the Borel Sets of a space are the sets in the minimal σ-algebra in X which contains all the open sets
of X. A countably sub-additive measure on a metric space (X, d) is called a countably sub-additive metric
measure if d(A,B) > 0 implies µ(A∪B) = µ(A) +µ(B) and one can prove that if µ is a countably sub-additive
metric measure, then all Borel sets are measurable (see Munroe[20] Corollary 13.2.1). The following facts will
be useful later on, but they are not particularly illuminating to prove. The proofs can be found in Rogers[8] or
Munroe[20].

Lemma 1.5. For a measure constructed via Method II.

1. µ (
⋃∞
i=0 Ui) = supi µ(Ui)

2. µ is a metric measure, and hence all Borel Sets are µ-measureable.

Definition 1.6. Throughout this report, the support of a measure µ : X → R refers to the smallest closed set
S with µ(X \ A) = 0. So a point x is in the support if and only if µ(B(x, r)) > 0 for all r. Moreover when we
speak of a measure on a set F ⊆ X we mean a measure with support contained in F.

1.2 Constructing Hausdorff Dimension

The previous section leads nicely into the definition of Hausdorff dimension.

Definition 1.7. We define the s-dimensional Hausdorff Measure for some F ⊂ X of a general metric space
(X, d) as

Hs (F ) = lim
δ→0

inf

{
n∑
i=0

|Ui|s : F ⊆
n⋃
i=1

Ui, 0 < |Ui| < δ

}
and the Hausdorff dimension

dimH = sup{x : Hs (x) =∞} = inf{x : Hs (x) = 0}

To see that Hs is a measure, it suffices to notice that the set function U → |U |s is a pre-measure on the set
of open sets, and the measure is that constructed via the Method II construction in 1.4. To see dimH is well
defined, if t > s, and {Ui} is a δ-cover of F, then:∑

i

|Ui|t ≤
∑
i

|Ui|t−s|Ui|s ≤ δt−s
∑
i

|Ui|s

So, taking infima, we see that if Hs(F ) <∞, then Ht(F ) = 0. So there is a critical value of s at which Hs(F )
jumps from ∞ to 0, which is exactly dimH.
The Hausdorff dimension generalises well the idea of dimension of a set, for example the Hausdorff dimension of
a smooth m-dimensional manifold in Rn is m, and for any set F ⊂ Rn, with dimH(F ) < 1, the set F is a totally
disconnected set of points. A proof of these facts can be found in Falconer[1]. Connections between Hausdorff
dimension and Lebesgue measure are discussed in depth in Rogers[8].

Example 1.8. The canonical example of a fractal set is the cantor set, described by taking the unit interval and
removing the middle third, then repeating the process on the remaining two intervals, and so on. C = ∩∞i=0Ci,
where C0 = [0, 1], C1 = [0, 1/3] ∪ [2/3, 1]. and so on. We can calculate an upper bound for the Hausdorff
dimension of this by taking the intervals making up the sets Ci as an open 3−k cover of C. Then Σ|Ci|s = 2k3−ks

and setting s = log 2/log 3 gives Hs(C) ≤ 1, and hence dimH C ≤ s.
In fact, dimH C = log 2/ log 3 but the upper bound is more complicated to calculate. Although it can be done
from here the calculation isn’t that constructive, so it is left until section 1.4.

Now that we have a notion of dimension, the obvious next question is which maps leave the Hausdorff dimension
invariant.

Lemma 1.9. If f : F → X is a map with d(f(x), f(y)) ≤ cd(x, y)α, for all x, y ∈ F , with some constants c > 0
and α > 0 (This is called the Hölder Condition of Exponent α). Then for any s, Hs/α(f(F )) ≤ cs/αHs(F ).

To see this let {Ui} be a δ-cover of F , then since |f(F ∩ Ui)| ≤ c|F ∩ Ui|α ≤ c|Ui|α, it follows that {f(F ∩ Ui)}
is a cδα-cover of f(F ). So

∑
i |f(F ∩ Ui)|s/α ≤ cs/α

∑
i |Ui|, and taking infima and letting δ → 0 gives the

required result. From here, the following lemma is clear.

Lemma 1.10. If f : F → X satisfies the Hölder condition of exponent α, then dimH f(F ) ≤ 1/α dimH F . In
particular, if f is a bi-Lipschitz mapping, then dimH f(F ) = dimH F .
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1 FOUNDATIONS 1.3 Box-Counting Dimension

Finally, one more lemma that will come in useful later and follows immediately since the projection map is
Lipschitz.

Lemma 1.11. If proj is projection from Rn onto the last m coordinates, then dimH(projF ) ≤ min{dimH F, 1}
for any F ⊆ Rn.

1.3 Box-Counting Dimension

The box-counting dimension will be needed in passing in some of the later sections, so a brief exposition of
it is given here. In fact, box-counting dimension has been around since before Hausdorff dimension but it is
significantly less useful than Hausdorff dimension, as will be discussed at the end of this section.

Definition 1.12. Given a non-empty bounded subset F ⊂ Rn let Nδ(F ) be the smallest number of sets of
diameter at most δ needed to cover F . Then we define the upper and lower box counting dimension (dimB and
dimB respectively) as

dimB(F ) = lim sup
δ→0

logNδ(F )

− log δ
and dimB(F ) = lim inf

δ→0

logNδ(F )

− log δ

If these two limits are equal we define the box counting dimension dimB as dimB(F ) = dimB(F ) = dimB(F ).

This definition gives the idea behind the box counting dimension, but in practice we usually use the following
alternative definition to make it easier to calculate. Say a collection of the form{

[m1δ, δ(m1 + 1)δ]× · · · × [mnδ, (mn + 1)δ] : m1, . . . ,mn ∈ Z
}

is a δ-mesh, and define N ′δ(F ) to be the number of cubes in a δ-mesh which intersects F. It is clear that
Nδ
√
n(F ) ≤ N ′δ(F ), so for δ small enough

logNδ
√
n(F )

− log(δ
√
n)
≤ N ′δ(F )

− log
√
n− log δ

So

dimBF ≤ lim inf
δ→0

logN ′δ(F )

− log δ
and dimB ≤ lim sup

δ→0

logN ′δ(F )

− log δ

To get the opposite inequalities in the above it suffices to notice that any set of diameter at most δ is contained
in at most 3n mesh cubes, so N ′δ(F ) ≤ 3nNδ(F ) and the argument follows along the same lines. Hence we
can replace Nδ by N ′δ in the definition of box-counting dimension. It can also be shown that is enough to
consider limits along a decreasing sequence δk = ck for some c ∈ (0, 1). This alternative definition lends itself to
empirical calculations, and indeed when people talk about the dimension of a coastline or some other natural
phenomenon they will often be talking about an estimation based on the box-counting dimension.
There is yet another alternative definition which deserves a mention here since it will be used in later sections.
If Ñδ(F ) is the maximum number of disjoint balls of radius δ with centers in F , then

dimB(F ) = lim sup
δ→0

log Ñδ(F )

− log δ
and dimB(F ) = lim inf

δ→0

log Ñδ(F )

− log δ

This can be easily proved in a similar way to the calculation with N ′δ.

Example 1.13. The box counting dimension of the cantor set C may be calculated by taking the obvious δ-meshes
for δk = 1/3k to find N ′δk(C) = 2k and thus

dimB(C) = dimB(C) = dimB(C) = lim
k→∞

log 2k

log 3k
=

log 2

log 3

We can relate the box-counting dimension to the Hausdorff dimension in the following way

Lemma 1.14. For any non-empty bounded F ⊆ Rn

dimH F ≤ dimBF ≤ dimBF

Proof. The latter inequality is obvious, for the former notice that if F is covered by Nδ(F ) sets of diameter δ
then

inf

{ ∞∑
i=0

|Ui|s : {Ui}∞i=1 a δ-cover of F

}
≤ Nδ(F )δs

so if Hs(F ) > 1, we have −δs < Nδ(F ) so s ≤ lim infδ→0 logNδ(F )/− log δ, which gives the required result.
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1 FOUNDATIONS 1.4 Mass Distribution Principle

The following properties demonstrate some of the other similarities between Hausdorff and box counting di-
mension, as well as leading us into its main problem.

Lemma 1.15. 1. If F is a smooth n-dim manifold, then dimB F = n.
2. If F1 ⊆ F2 then dimB(F1) ≤ dimB(F2) and dim(F1) ≤ dim(F2).
3. dimB and dimB are bi-Lipschitz invariant.
4. dimB(F ) = dimB(F ) and dimB(F ) = dimB(F ), where F is the closure of F.

All of these follow from the definitions, but we will only prove the last one here.

Proof. If Bi is a finite collection of sets of diameter at most δ with F ⊂ ∪iBi then F ⊂ ∪iBi also.

The last property of the previous lemma is a real problem for the box-counting dimension, as it implies that
dimB(Q ∩ [0, 1]) = dimB([0, 1]) = 1. So the box counting dimension can be affected by countable sets which is
something we really don’t want (it was wish 3 in our wish list in the introduction). Several people have come
up with modified versions of the box-counting definition to remove this issue, for example by taking

dim(F ) = inf

{
sup

1≤i≤∞
(dimB Fi) : F ⊆

∞⋃
i=1

Fi

}

Unfortunately these types of modifications mean that this new modified dimension is no longer easy to calculate.

1.4 Mass Distribution Principle

The Hausdorff dimension is only going to be of any use if there are ways to calculate it, or at least obtain some
bound on its value. Most of the time finding an upper bound on the dimension is easier than finding a lower
bound. To find an upper bound it is usually sufficient to compute

∑
|Ui|s for some collection of δ-covers, as it

was in the cantor set example. However to find a lower bound it is necessary to consider all δ-covers, which is
often much harder. These next two subsections give some useful techniques for finding this lower bound.
The Mass distribution Principle provides a way of estimating the lower bound of the Hausdorff Dimension,
roughly speaking if we can create a mass distribution on F which assigns ‘less’ mass than the ‘size’ |U |s of the
set U , then we will gain information about Hs.

Lemma 1.16. Mass Distribution Principle Let µ be a mass distribution on F ⊂ Rn (Here we take a mass
distribution to mean a countably sub-additive measure with 0 < µ(F ) <∞), and suppose for some s ≥ 0, there
exists c > 0 and ε > 0 such that µ(U) ≤ c|U |s for all sets U with |U | ≤ ε. Then Hs(F ) ≥ µ(F )/c and s ≤
dimH F .

Proof. Let {Ui} be a δ-cover of F , with δ ≤ ε then

0 < µ(F ) ≤ µ

( ∞⋃
i=1

Ui

)
≤
∞∑
i=1

µ(Ui) ≤ c
∞∑
i=1

|Ui|s

Thus, taking infima over all δ-covers gives Hs(F ) ≥ µ(F )/c > 0, and so dimH(F ) ≥ s.

Notice there was no requirement in the above for the sets Ui or the set F to be measurable.

Example 1.17. We can use the mass distribution principle to get an upper bound on the dimension of the
cantor set. Recalling the cantor set C is described by C = ∩∞i=0Ci, where C0 = [0, 1], and C1 = [0, 1/3] ∪ [2/3, 1]
and so on (defined iteratively by removing the middle third from each interval).
A (countably sub-additive) measure µ can be defined by letting µ(U) = 2−k for each interval U in Ck, and then
using method I (Lemma 1.2) to generalise this onto arbitrary subsets of R. Now, for any open set U ⊂ [0, 1],
let k be the integer with 3−k+1 ≤ |U | < 3−k. U can intersect at most one interval in Ck, and hence µ(U) ≤ 2−k

and

µ(U) ≤ 2−k = 3−k
log 2
log 3 =

(
3−k

) log 2
log 3 ≤ (3|U |)

log 2
log 3

Hence, by the mass distribution principle, log 2
log 3 ≤ dimH(C)
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1 FOUNDATIONS 1.5 Thermodynamic Formalism

1.5 Thermodynamic Formalism

Although the Mass Distribution Principle is useful it does require the estimation of µ(U) for a large number of
small sets U . This method replaces that requirement with the calculation of a single integral.

Definition 1.18. For s ≥ 0, define the s-energy Is(µ) of µ as:

Is(µ) =

∫
φs(x)dµ(x) where φs(x) =

∫
dµ(y)

|x− y|s

First we need a preliminary lemma:

Lemma 1.19. Let µ be a mass distribution on Rn, F ⊂ Rn, and 0 < c <∞ a constant.

If lim sup
r→0

µ(B(x, r))

rs
< c ∀x ∈ F , then Hs(F ) ≥ µ(F )

c

Proof. For each δ > 0, define the set Fδ = {x ∈ F : µ(B(x, r)) < crs ∀ 0 < r ≤ δ}. Now, any δ-cover Ui is
necessarily a δ-cover of Fδ, and for any x ∈ Fδ, Ui ⊆ B(x, |Ui|) (recall a δ-cover has sets of diameter at most δ)
Now, µ(Ui) ≤ µ(B) ≤ c|Ui|s, and µ(Fδ) ≤

∑
i {µ(Ui) : Ui ∩ Fδ 6= ∅} ≤ c

∑
i |Ui|s, and so µ(Fδ) ≤ cHs(F ).

Finally, as Fδ are increasing as δ decreases, limδ→0 µ(Fδ) = µ(∪δ>0Fδ) = µ(F ) (by continuity of µ), giving
µ(F ) ≤ cHs(F ).

Now we are ready to prove the main result, that given a mass distribution on F with finite s-energy, we can
conclude that the Hausdorff dimension of F is greater than s. This can be a very powerful way of obtaining a
lower bound on the Hausdorff dimension.

Lemma 1.20. 1. Let F ⊂ Rn, if there is a mass distribution µ on F and Is(µ) <∞, then Hs(F ) =∞ and
dimH F ≥ s.

2. If F is a Borel set with Hs(F ) > 0 then there exists a mass distribution µ on F with It(µ) < ∞ for all
0 < t < s.

Only the first part of this lemma will be proved, since this is the most useful for later on, the second part is
just stated for interest. The proof of the first part given here is an elaboration of that from Falconer[1] and a
proof of the second part can be found there also.

Proof. Let µ be a mass distribution with support (recall Definition 1.6) contained in F and Is(µ) < ∞. Then
define

G =

{
x ∈ F : lim sup

r→0

µ(B(x, r))

rs
> 0

}
. For any x ∈ G we can find some ε > 0 and sequence ri → 0 such that µ(B(x, ri)) ≥ εrsi . Now µ({x}) = 0,
else φs(x) =∞ and so Is(µ) =∞, which cannot happen. By continuity of µ,

lim
n→∞

µ(B(x, 1/n)) = µ

( ∞⋂
n=1

B(x, 1/n)

)
= 0

So we may choose qi, 0 < qi < ri such that µ(B(x, qi)) ≤ 3/4εrsi . Next, define the annuli Ai = B(x, ri)\B(x, qi).
So µ(Ai) ≥ 1/4εrsi . Passing to a subsequence if necessary, it can be assumed that ri+1 < qi for all i, making
the annuli Ai disjoint. So for all x ∈ G

φs(x) =

∫
dµ(y)

|x− y|s
≥
∞∑
i=1

∫
Ai

dµ(y)

|x− y|s
≥ 1

r−si

∫
Ai

dµ(y) ≥
∞∑
i=1

1

4
εrsi r

−s
i =∞

But Is(µ) =
∫
φs(x)dµ(x) <∞ by assumption, so φs(x) <∞ for µ-almost all x, and hence µ(G) = 0.

Now, for all x ∈ F \G, it is the case that lim supr→0
µ(B(x,r))

rs = 0 so by lemma 1.19, we have for all c > 0

Hs(F ) ≥ Hs(F \G) ≥ µ(F \G)/c ≥ (µ(F )− µ(G))/c = µ(F )/c

So Hs(F ) =∞ and dimH(F ) ≥ s

Example 1.21. Thermodynamic Formalism can be used to give the same lower bound on the Hausdorff dimen-
sion of the cantor set C as was obtained using the mass distribution principle. Let µ be the same measure as was
constructed in the previous example (split the mass evenly across each interval at each step of the construction).
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1 FOUNDATIONS 1.6 Sequence Spaces

Firstly, notice that Γ = {(x, y) ∈ C2 : x = y} is a (µ× µ)-null set since

(µ× µ)(Γ) =

∫
C
µ(Γ(y))dµ(y) = 0

where Γ(z) = Γ∩ {(x, y) : y = z}. Now we can split up C × C in the following way. Write Cij for the ithinterval

from the left in the jthiterate of the construction and let U1 = C2
1 × C1

1 ∪ C1
2 × C1

1 , Uk =
(
∪i 6=jCik × C

j
k

)
\ Uk−1

for k ≥ 2. So Uk is made up of 2k disjoint sets and µ(Uk) = 2k · 4−k = 2−k. Now for any s < log 2/log 3.∫
C×C

1

|x− y|s
d(µ× µ) =

∞∑
k=1

∫
Uk

d(µ× µ)

|x− y|s
+

∫
Γ

d(µ× µ)

|x− y|s
=

∞∑
k=1

µ(Uk)3ks ≤
∞∑
j=1

3ks2−s <∞

Since for all (x, y) ∈ Uk, |x− y| ≥ 1/3k. Now by Fubini’s theorem (see [20] Theorem 29.7)∫
C

∫
C

dµ(x)dµ(y)

|x− y|s
=

∫
C×C

d(µ× µ)

|x− y|s
<∞

Which gives the lower bound dimH C ≥ s for all s < log 2/ log 3 by Lemma 1.20 and hence dimH C ≥ log 2/ log 3.

1.6 Sequence Spaces

A small detour has to be taken here to discuss sequence spaces, as much of the later material is described most
easily using them. Direct comparisons between the dimensions of the sequence space and some attractors of
dynamical systems can be made, and the sequence space will be useful for creating measures to be used in
conjunction with the mass distribution principle and thermodynamic formalism.
First, some notation. If A is a finite set, then write Ak for the set of length-k sequences over A, AF = ∪∞i=0Ak
for the set of all finite sequences and AN for the set of one-sided infinite sequences over A. In this report, A
will always be the set {1, . . . ,m}, for some m ∈ N.
For i = (i0, . . . , in) ∈ AF and j = (j0, j1, . . .) ∈ AF or AN, write i, j for the sequence (i0, . . . in, j0, j1, . . .). Also,
write i < j, if j = i, i′, and |i| for the length of the sequence. If i, j ∈ AN, then we denote by i ∧ j the maximal
subsequence such that i ∧ j < i and i ∧ j < j. We denote by [i0, . . . , in] = {i : (i0, . . . in) < i} the cylinder sets
and finally, σ : AN → AN denotes the usual shift on AN, taking (i0, i1, . . .) 7→ (i1, i2, . . .). Next we state some
basic properties of AN, which will come in useful later when we want to describe measures on the space.

Lemma 1.22. (1) The topology B generated by taking the cylinder sets as a basis forms a σ-algebra in AN.
(2) The function d : AN ×AN → R≥0, given by d(i, j) = 2−|i∧j|, is a metric on AN.
(3) The topology B is also the Borel σ-algebra generated by the metric d.
(4) AN is compact with respect to the above topology.

Proof. (1) The complement of a cylinder set is a union of cylinder sets.
(2) For any k ∈ AN, d(i, j) ≤ 2−min{|i∧k|,|k∧j|} = max{d(i,k), d(k, j)}
(3) The open balls with respect to d are exactly the cylinder sets.
(4) Using the metric d, AN can be shown to be compact, by showing it to be complete and totally bounded.

For total boundedness, it suffices to notice that any sequence is a distance of at most 2 away from any
other. To show completeness, take a Cauchy sequence in in ∈ AN , and notice the Cauchy condition is
equivalent to

∀C ∈ N,∃NC ∈ N such that ∀n,m > NC we have that |im ∧ in| > C

So every sequence in the set IC = {in : n > NC} agrees on the first C terms. Then a sequence i can be
chosen by taking the Cth element of i as the Cth element of any sequence in IC , and then this sequence
is the limit of in.

A new metric ρ can be defined on AN, by setting ρ(i, j) = ci0 . . . cin , where n = |i∧ j| and {c0, . . . , cm} is a set of
integers with 0 < ci < 1. From now on, this metric will be referred to as the metric generated by {c1, . . . , cm}.
Interestingly, ρ is in fact an ultrametric, it satisfies ρ(x, y) ≤ max{(ρ(x), ρ(y)} and it will come in useful when
relating the Hausdorff dimension of subsets of the shift space to the Hausdorff dimension of certain fractals.

Lemma 1.23. The Borel sigma algebra B generated by d is the same as the Borel σ-algebra generated by ρ.

Proof. The open balls with respect to ρ are exactly the cylinder sets.

Most of the content in the coming sections will use countably sub-additive measures defined on the σ-algebra
of all subsets of a space and we need not worry about the above. However, there are one or two places where
it is important to have a (countably additive) measure defined on the Borel σ-algebra (for example in section 3
where we need to use Fubini’s theorem).
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1 FOUNDATIONS 1.7 Subshifts of Finite Type

1.7 Subshifts of Finite Type

In this section , A = {1, . . . ,m}. If K ⊆ AN we say K is a subshift if σ(K) ⊆ K. If B = bi,j is an m×m matrix
with entries in {0, 1}, then the subset AB of AN can be defined by allowing only the elements i = (i0, i1, . . .)
with the property that bij ,ij+1 for all j ∈ N. This subset is called the subshift of finite type associated to B,
and B is known as the transition matrix. Clearly, AB satisfies σ(AB) ⊆ AB . Notice that if B has a row i
which contains all zeros, then no i ∈ AB may contain bi (since there would be no choices for bi+1. Since we are
only interested in modeling infinite sequence spaces, we will exclude matrices which contain entirely zeros rows.
Subshifts of finite type are often described using their associated directed graph G, given by taking the vertices
as the points in A and saying there is an edge from i to j in G if bi,j = 1.

Example 1.24. If A = {1, 2, 3} then the transition matrix B gives associated graph G:

B =

 1 1 0
1 0 1
1 0 1

 1::
((
2hh

���������

3

OO

::

The metrics d and ρ can be restricted to AB , and will still be written d and ρ, they retain all the properties of
Lemma 1.22.

1.8 Iterated Function Systems

Definition 1.25. 1. A mapping S : D → D is called a contraction on some closed D ⊂ Rn if there is some
c, with 0 < c < 1 and |S(x) − S(y)| ≤ c|x − y| for all x, y ∈ D. If |S(x) − S(y)| = c|x − y|, then S is a
contracting similarity (or just similarity). The constant c is usually called the contraction factor.

2. A finite family {Si}mi=1 of contractions is called an iterated function system, and we call a non-empty
subset Λ ⊂ D, such that Λ = ∪mi=1Si(Λ), the invariant set.

3. A set Λ which can be represented as the invariant set of an iterated function system is called a self-similar
set.

Iterated Function Schemes can be modeled using sequence spaces and subshifts of sequence spaces. If {S1, . . . Sm}
is an IFS then let A = {1, . . . ,m}, then choose some compact bounded set B ⊂ Rn big enough that B ⊆ Si(B)
for all i, and define:

S(i) = Si1 ◦ Si2 ◦ · · · ◦ Sin(B) if i = (i1, i2, . . . , in) ∈ AF

S(i) =

∞⋂
r=0

Si1 ◦ Si2 ◦ · · · ◦ Sir (B) if i = (i1, i2, . . .) ∈ AN

Now |∩nk=0Si0◦Si1 · · ·Sik(B)| < |B|ci0 · · · cin , so the diameters are decreasing and hence by Cantor’s Intersection
Theorem, the intersection S(i) = ∩∞k=0Si0 ◦Si1 · · ·Sik(B) is a single point. If we want to work with some subshift
K ⊆ AN instead of with the full shift, we can simply restrict the above map to the subshift.
Notice also that with the above definition we could have used any compact bounded set B with the property
that Si(B) ⊂ B for all i. The next lemma the most important lemma in this section as it shows the invariant
set Λ is completely determined by the iterated function system when we are working with the full shift.

Lemma 1.26. Any Iterated Function Scheme determines a unique invariant set Λ, where Λ is compact and
non-empty.

Proof. Existence: Firstly, ∪i∈AnS(i) are non empty compact sets satisfying
⋃

i∈An S(i) ⊂
⋃

i∈An−1 S(i). Hence
we have that

Λ =

∞⋂
n=1

( ⋃
i∈An

S(i)

)
is non-empty and compact (by Cantor’s Intersection theorem again) and satisfies Λ = ∪mi=1Si(Λ).
Uniqueness: Firstly we define the Hausdorff metric

d(A,B) = inf {δ : A ⊆ Bδ , B ⊆ Aδ} where Uδ = {x : |x− u| ≤ δ for some u ∈ U}

It is easy to check this satisfies the conditions of a metric. Next assume Λ̃ also satisfies Λ̃ = ∪mi=1Si(Λ̃) and
notice

d(Λ, Λ̃) = d

(
m⋃
i=1

Si(Λ),

m⋃
i=1

Si(Λ̃)

)
≤ max

1≤i≤m
d
(
Si(Λ), Si(Λ̃)

)
≤ max

1≤i≤m
cid(Λ, Λ̃)

9



1 FOUNDATIONS 1.8 Iterated Function Systems

So because 0 < ci < 1 for all i, d(Λ, Λ̃) = 0.

Also since ∪iSi(∪i∈ANS(i)) = ∪i∈ANS(i), by uniqueness Λ = ∪i∈ANS(i). We now consider properties of the map
S, with respect to the metric ρ on AN, defined in section 1.6.

Lemma 1.27. If S : AN → Λ as in the previous section.

1. The map S is Lipschitz and hence continuous.
2. If the iterated function system is made up of contracting similarities, and S is injective then S is bijective

and bi-Lipschitz.

Proof. 1. For i, j ∈ AN, we have S(i), S(j) ∈ Si0 ◦ Si1 · · ·Sir (Λ), where r = |i ∧ j|. Hence |S(i) − S(j)| ≤
|Λ|ρ(i, j).

2. Since Λ is exactly ∪i∈ANS(i), the map S : AN → Λ is always surjective, so if S is injective it is bijective
also. S can also be seen to be bi-Lipschitz. Let i, j ∈ AN agree up to the first n-1 places and disagree on
the nth, so since the Si are contractions:

|S(i)− S(j)| = ci0 · · · cin
∣∣∣S(̃i)− S(̃j)

∣∣∣ = ρ(i, j)
∣∣∣S(̃i)− S(̃j)

∣∣∣ ≥ ρ(i, j) min
i 6=j

(d (Si(Λ), Sj(Λ)))

where ĩ, j̃ ∈ AN differ in the first position, d is the usual distance between two sets, and

min
i 6=j

(d (Si(Λ), Sj(Λ))) > 0

because Λ is compact, and hence closed, so if the distance between S1(Λ) and S2(Λ) was zero, they would
share a point, which would contradict the injectivity of S.

The first part of the above lemma doesn’t require the fact that S is defined on the whole shift and is still true
is we restrict it to some subshift, the second part of the lemma does require this but if we restrict the map to
S : K → ∪i∈KS(i) it holds. This sort of technique is discussed in more detail in Section 2.2 on sub-self-similar
sets.
This result above can make the map S incredibly useful. If S can be shown to be injective then it is bi-Lipschitz,
then by Lemma 1.10 S preserves Hausdorff dimension. So we can say that dimH(K) = dimH(Λ).

Example 1.28. The Sierpiński Triangle, can be defined as the invariant set Λ by the similarities {S1, S2, S3},
where

S1 = T, S2 = T +

(
1
2
1
2

)
, S3 = T +

(
1
0

)
, where T =

(
1
2 0
0 1

2

)
This iterated function system has unique invariant set Λ = ∪i∈ANS(i). We write Ik for the set of cylinder
sets of length k, and notice that Ik is a cover of AN with |Ik| = 2k and |I| = 3−k for all I ∈ Ik. Hence if
s = log 3/ log 2 then

∑
I∈Ik |I|s = 3k2−ks = 1. Hence Hs(Λ) ≤ 1 and dimH Λ ≤ s.

Figure 2: The Sierpiński Triangle

Unfortunately, in practice S is not always injective as a map on AN. To get around this we can restrict the
order in which we apply the similarities, ie. model this as as a subshift.
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1 FOUNDATIONS 1.9 Measures on Sequence Spaces

Example 1.29. If we restrict the order in which we can apply the similarities when constructing the Sierpiński
triangle, we can create a modified Sierpiński triangle. For example, allowing all compositions except S1 with
itself can be modeled with a subshift of finite type generated by the transition matrix

B =

 0 1 1
1 1 1
1 1 1


Now there is the problem that it is unclear how to calculate an upper bound for dimH. A technique for doing
this will be given in section 2.3.

Figure 3: Modified Sierpinski Triangle

Although calculations of the dimensions of these two Sierpiński carpets could be done from here using the same
method used to find the dimension of the cantor set, it is best left until later when more techniques have been
developed.

1.9 Measures on Sequence Spaces

An alternative use of sequence spaces in modeling Iterated Function Systems comes from the fact that it is in
general much easier to define a measure on AN, than it is on Λ. The measure defined on AN can then be used
to define a measure on some invariant set Λ of an iterated function system, as demonstrated in the following
lemma.

Lemma 1.30. 1. If µ is a countable sub-additive measure on AN, then ν is a countably sub-additive measure
on Λ, where ν(U) = µ{i : S(i) ∈ U}. Moreover if µ is a (countably sub-additive) mass distribution on AN

then ν is a (countable sub-additive) mass distribution on Λ.
2. If µ is a (countably additive) measure on B, the Borel σ-algebra on AN, then ν is a (countably additive)

measure on the Borel σ-algebra of Rn.

Proof. 1. ν(∅) = 0 and U ⊆ V ⊆ AN ⇒ ν(U) = µ(S−1(U)) ⊆ µ(S−1(V )) = ν(V ) follow easily. Moreover,
given Ui a countable collection of sets

ν

( ∞⋃
i=0

Ui

)
= µ

( ∞⋃
i=0

S−1(Ui)

)
≤
∞∑
i=0

ν(Ui)

If µ is a mass distribution, ie 0 < µ(AN) < ∞, then ν(Λ) = µ(AN), and hence ν is also. We can write µ
as ν(U) = µ(S−1(U)). Now since S is continuous and continuous functions pull back open sets to open
sets and closed sets to closed sets, S also pulls back Borel sets to Borel sets. So if {Ui}∞i=1 is a countable
collection of disjoint Borel sets in Rn then µ(S−1(∪iUi) = µ(∪iS−1(Ui)) =

∑
i µ(S−1(Ui)), since the

S−1(Ui) are disjoint also.

This result, and constructions very similar to this will turn out to be extremely helpful in many of the theorems
that follow. As an example, consider the Bernoulli Measure on AN is given by µ([i0, i1, . . . in]) = pi0pi1 . . . pin ,
where {pj : j ∈ A} is a probability vector (

∑
j pj = 1). This defines a countably sub-additive measure by the

Method 1 construction in Lemma 1.2, taking the pre-measure on the class of cylinder sets. In fact the Bernoulli
Measure is a (countably additive) measure on the σ-algebra B generated by cylinder sets, a fact which follows
from Carathéodory’s Extension Theorem ([20] Theorem 11.2).
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Example 1.31. This measure can then be projected down onto, for example, the cantor set C ⊂ X, in this case
A = 0, 1 corresponding to the two similarities S1 and S2. Let µ be the Bernoulli measure with probability vector
{1/2, 1/2}, and ν the associated measure on X. It is easy to see this defines the same measure as in the earlier
example (Mass Distribution Principle), as a cylinder set [i0, . . . ik] in AN corresponds to an interval in the kth

iterate of the construction, Ck.

2 Self-Similar Sets

The cantor set example in the previous section didn’t really show the full power of using iterated function system
and sequence spaces. We now give a simple condition that reduces the calculation of the Hausdorff dimension
of an invariant set of an IFS to a very simple form. The condition is called the open set condition, and roughly
speaking asks for the IFS to satisfy some sort of separation condition, ie. the images of the contractions Si
cannot ’overlap’ too much.

Definition 2.1. We say an IFS satisfies the Open Set Condition (OSC), if there is a bounded non-empty open
set U ⊂ Rn, such that for all i, Si(O) ⊂ O, and for all i 6= j, Si(O) ∩ Sj(O) = ∅. Such an open set is called a
feasible open set.

We require a few preliminaries before the main proof.

Lemma 2.2. If Ui ⊂ Rn is a collection of disjoint open sets, with each Ui containing a ball of radius a1r and
contained in a ball of radius a2r. Then any ball B of radius r intersects at most (1 + 2a2)na−n1 of the closures
Ui

Proof. Let B = B(x, r), so if U i ∩ B(x, r) 6= ∅ then U i ⊂ B(x, 1 + 2a2r). If q sets U i intersect with B(x, r),
then we sum up the volume of the (disjoint) interior balls of the Ui to give q(a1r)

n ≤ (1 + 2a2)nrn.

Lemma 2.3. Given {c1, . . . , cm} with 0 < cj < 1 for all j, the set function µ on AN = {1, . . . ,m}N, given by
µ([i0, . . . , ik]) = (ci0 · · · cik)s defines a countably sub-additive mass distribution on AN, where s is the unique
real number such that

∑
j c
s
j = 1.

Proof. We use the Method I construction (Lemma 1.2) to define the sub-additive measure on AN from the pre-
measure µ on the class of cylinder sets. Finally, µ(AN) = µ(∪j [j]) =

∑
j c
s
j = 1, so µ is a mass distribution.

Now we come to the main result, the upper bound in the following theorem is fairly easy to derive, but the lower
bound is a little involved, although in essence it relies on defining a measure in the sequence space, pushing it
down onto Λ and then appealing to the mass distribution principle.

Theorem 2.4. Given an IFS of similarities {Si}mi=0 satisfying the open set condition, with ratios 0 < ci < 1
and invariant set Λ, then dimH Λ = dimB Λ = s, where s is given by

∑m
i=0 c

s
i = 1. Moreover, for this s,

0 < Hs(Λ) <∞.

Only the calculation for the Hausdorff Dimension will be done here, the calculation for the box dimension
follows along similar lines. It is also a consequence of Theorem 4.3.

Proof. Recall the maps from the sequence space onto Λ could be defined for any closed bounded B large enough
that B ⊆ Si(B) for all i. Since this is true for Λ itself, we will take that as the definition for now.

S(i) = Si1 ◦ · · · ◦ Sin(Λ) for i ∈ AF and S(i) = lim
n→∞

Si1 ◦ · · · ◦ Sin(Λ) for i ∈ AN

Firstly, for the upper bound notice that Λ = ∪i∈AkS(i) is an open cover of Λ, where |S(i)| ≤ (maxi{ci})k|Λ|.
So given any δ > 0, we may choose k large enough for |S(i)| ≤ δ for all i ∈ Ak. Finally it suffices to notice

∑
i∈Ak

|S(i)|s =
∑

(i0,...ik)∈Ak

(ci1 · · · cik)s|Λ|s =

(∑
i1∈A

csi1

)
· · ·

(∑
ik∈A

csik

)
|Λ|s = |Λ|s

This gives Hs(Λ) ≤ |Λ|s.
For the lower bound let µ be the mass distribution of the previous lemma, and ν the natural mass distribution
on Λ (as in Lemma 1.30) defined by taking ν(U) = µ({i : S(i) ∈ U}). We show ν satisfies the conditions of
the mass distribution principle (lemma 1.16), and ν(Λ) = 1. Let O be a feasible open set (as in Definition 2.1)

and notice that by the argument of Lemma 1.26 that
(∑m

i=1 Si(O)
)k

converges to Λ as k → ∞. Moreover,

Si0 ◦ · · · ◦ Sik(O) ⊇ Si0 ◦ · · · ◦ Sik(Λ) for all (i0, . . . , ik) ∈ AF . Let B be a ball of radius r < 1, we will want to
estimate ν(B).
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2 SELF-SIMILAR SETS 2.1 The Open Set Condition

If we truncate each sequence i ∈ AN to i0, . . . ik where k is the smallest integer such that

r min
1≤i≤m

ci ≤ ci0 · · · cik ≤ r

and denote the set of such sequences byQ. Now, Sa(O) and Sb(O) are disjoint for all a 6= b so Si0◦· · ·◦Sik◦Sa(O)
and Si0 ◦ · · · ◦ Sik ◦ Sb(O) are disjoint for all a 6= b and all (i0, . . . , ik) ∈ AF . Hence we can conclude{

Si0 ◦ · · · ◦ Sik(O) : (i0, . . . , ik) ∈ Q
}

is a pairwise disjoint collection (2.1)

Notice also that Λ ⊂ ∪QSi0 ◦ · · · ◦ Sik(Λ) ⊂ ∪QSi0 ◦ · · · ◦ Sik(O). Choose a1, a2 such that O contains a ball of
radius a1 and is contained in a ball of radius a2. So for all (i0, . . . ik) ∈ Q, Si0 ◦ · · · ◦ Sik(O) is contains a ball
of radius a1rmini ci and is contained in a ball of radius ci1 · · · cika2 and hence in a ball of radius a2r.
Let Q1 denote the sequences (i0, . . . , ik) ∈ Q such that B ∩ Si1 ◦ · · · ◦ Sik(O) 6= ∅. By (2.1) and Lemma 2.2, B
intersects at most q = (1 + 2a2)na−n1 (minc ci)

−n elements of Q. Hence

ν(B) = µ{i : S(i) ∈ B)} ≤ µ
⋃

(i0,...,ik)∈Q1

[i0, . . . ik] ≤
∑
Q1

µ([i0, . . . ik]) =
∑
Q1

(ci0 · · · cik)s ≤
∑
Q1

rs ≤ rsq

So since U is contained in a ball of radius |U |, ν(B) ≤ |U |sq and by the mass distribution principle (Lemma
1.16), Hs(Λ) ≥ 1/q > 0 and dimH Λ ≥ s.

Example 2.5. This theorem immediately gives us the dimension of the cantor set C, using the similarities
S1(x) = x/3, S2(x) = x/3+2/3 defined earlier. {S1, S2} satisfies the open set condition with the open set (0, 1),
and hence theorem 2.4 gives 2

(
1
3

)s
= 1, where s = dimHC. Hence dimH(C) = log 2/log 3.

Example 2.6. The Hausdorff dimension of the Sierpiński Triangle Λ given by the similarities {S1, S2, S3} is
also easily calculated, where

S1 = T, S2 = T +

(
1
2
1
2

)
, S3 = T +

(
1
0

)
, where T =

(
1
2 0
0 1

2

)
Each Si clearly has contraction factor 1/2, and the open set condition holds with open set (0, 2)× (0, 1) ⊂ R2.
So theorem 2.4 gives dimH(Λ) = log 3/log 2

2.1 The Open Set Condition

The main condition needed in the previous section was the open set condition (OSC). It is interesting to
notice the exact interplay between different conditions such as the open set condition. The results below
are given just for interest and will not be used in the remaining material. In theorem 2.4 we showed that
OSC ⇒ Hα(F ) > 0⇒ dimH(F ) = α, where α = dimB(F ). It was shown by A. Shief[9] that in fact

OSC ⇔ Hα > 0⇒ dimH(F ) = α

The final inequality unfortunately does not go both ways as can be illustrated by an example originally due to
Mattila. Showing that for any fractal set it is possible to have H1 = 0 with dimH = dimB = 1 is easy (consider
a cantor set where the size of the intervals removed at each stage decreases), but it is significantly harder to
find a self-similar example.

Example 2.7. Consider

T1 = T2 = T3 =

(
1
3 0
0 1

3

)
a1 =

(
0
0

)
, a2 =

(
2
3
0

)
, a3 =

( 1
3
1

2
√

3

)
This creates a variant of the Sierpiński triangle, which satisfies the open set condition with (0, 1)× (0, 1

2 ) and
using theorem 2.4 it is easy to show α = dimB(Λ) = dimH(Λ) = log 3/ log 2. Next, it is possible to say that
for almost any line through the origin in R2 the projection of Λ onto this subspace is self-similar, satisfies the
OSC and has Hausdorff and box dimension 1, but H1 is zero. Unfortunately this requires some tricky theorems
involving densities, it in fact follows from Falconer[1] Theorems 5.2, 6.8.

It has also been shown by Bandt and Graf[10] that the OSC is equivalent to what they call the Neighbour Map
Condition. The set of neighbour maps is N = {S−1

i ◦ Sj : i, j ∈ AF , i0 6= j0} The neighbour map condition
then states that there is a constant κ > 0 such that for all h ∈ N , ‖h − id ‖ > κ. The norm here is the usual
supremum norm on Rn.

13



2 SELF-SIMILAR SETS 2.2 Sub-Self-Similar Sets

Figure 4: The variant of the Sierpiński triangle from Example 2.7

Finally C. Bandt, N. Viet Hung and H. Rao[11] built on this to give a constructive approach to creating this
open set by showing that if

V = {x : d(x,Λ) < d(x,H)} where H =
⋃
h∈N

h(Λ)

Then V is a feasible open set if OSC holds, and moreover if OSC does not hold then V = ∅.

2.2 Sub-Self-Similar Sets

In section 2 we found an easy way to calculate the Hausdorff dimension of a space which can be modeled
using a full shift AN and which satisfies the open set condition. The following result relaxes the first criterion,
requiring only that it is modeled by some subshift of the shift space. Throughout this section the metric on AN

is d(i, j) = 2−|i∧j| (this metric was discussed in section 1.6). We will say that Λ is sub-self-similar with respect
to an iterated function systems {S1, . . . , Sn} if Λ ⊆ ∪mi=0Si(Λ). The next Lemma is very powerful, as it allows
us characterise sub-self-similar sets generated by iterated function systems in Rn using subshifts in AN.

Example 2.8. If Λ is a self-similar set, ie. Λ = ∪iSi(Λ) for some iterated function systems S1, . . . , Sm, then
∂Λ ∈ Λ since Λ is closed. Let z ∈ ∂Λ with z ∈ Si(Λ) for some i, then if z = Si(x) for some x ∈ Λ◦ then there
would be some open set U ⊂ I◦ with Si(U) ⊆ Λ◦ contradicting z ∈ ∂Λ. Hence z ∈ Sj(∂Λ) and so ∂Λ ⊆ ∪iSi(∂Λ)
is a sub-self similar set.

For example, taking the self-similar set generated by Si(x) = T (x) + ai where T =

(
1
3 0
0 1

3

)
and a1 =

(
0
0

)
,

a2 =

(
1
3
0

)
, a3 =

(
2
3
0

)
, a4 =

(
0
1
3

)
, a5 =

(
1
3
1
3

)
, a6 =

(
2
3
1
3

)
, a7 =

(
0
2
3

)
, a8 =

(
1
3
2
3

)
, a9 =

(
2
3
2
3

)
, a10 =

(
1
1

)
. By

the remarks above, ∂Λ is a sub-self-similar set with respect to the same S1, . . . , S10.

Figure 5: Self-Similar Set of Example 2.8. The Hausdorff dimension can be calculated as being almost certainly
dimH Λ = log 10/ log 3 via Theorem 3.9 in the section on Self-Affine sets (unfortunately, we cannot use Theorem
2.4 since the open set condition does not hold).

Lemma 2.9. Let {S1, . . . , Sm} be contractions. Then Λ is compact and sub-self-similar for {S1, ..., Sm} if and
only if Λ = S(K) for some compact set K ⊆ AN satisfying the condition σ(K) ⊆ K

14



2 SELF-SIMILAR SETS 2.2 Sub-Self-Similar Sets

Proof. If K is some compact subset of AN, with σ(K) ⊆ K. Then for any x ∈ S(K), it is true that x = S(i)
for some i = (i1, i2, . . .) ∈ K. Hence x = Si1(S(σ(i))) ∈ Si1(S(K)). This shows that S(K) satisfies the
Sub-Self-Similar Condition. For the converse, suppose Λ satisfies Λ ⊆ ∪mi=0Si(Λ) and let

K = {(i0, i1, . . .) : S(ik, ik+1, . . .) ∈ Λ ∀k ∈ N}

Clearly σ(K) ⊆ K. Now, since S is continuous (by lemma 1.27) and Λ is closed we have that S−1(Λ) is closed.
By continuity of σ,

σ−k
(
S−1(Λ)

)
=
{

(i0, i1, . . .) : (ik, ik+1, . . .) ∈ S−1(Λ)
}

is closed. Hence

K =

∞⋂
k=1

{
(i0, i1, . . .) : (ik, ik+1, . . .) ∈ S−1(Λ)

}
is closed and compact (recall that AN is compact).
It is also clear that S(K) ⊆ Λ. Now, if x0 ∈ Λ then by the sub-self-similar condition, there exists an i0 such
that x0 = Si0(x1) for some x1 ∈ Λ. Now, there exists an i1 such that x1 = Si1(x2) ∈ Λ and so on. Hence
x0 =

⋂∞
k=0 Si0 ◦ · · · ◦ Sik(B) = S(i) for some i = (i0, i1, . . .) ∈ S−1(Λ) and indeed for any k ∈ N

S(ik, ik+1, . . .) =

∞⋂
j=k

Sik ◦ · · · ◦ Sij (B) = xk ∈ Λ

Hence x0 ∈ S(K) and Λ ⊆ S(K).

Example 2.10. Consider a simplification of Example 2.8, where we take the first nine contractions S1, . . . , S9.
It is clear that the invariant set of these contractions is simply the unit square [0, 1]2. We can then describe
the subshift generating ∂[0, 1]2 using the graph of figure 6. K9 represents the complete graph on 9 vertices, and
the allowable sequences are those which eventually follow one of the dotted lines into one of the four subgraphs
which each give one side of the unit square.
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Figure 6: Directed graph showing allowable sequences to generate ∂[0, 1]2

Firstly, some notation

1. Kk is the set of sequences in k-length sequences in K and KF = ∪∞k=1K
k is the set of finite length

sequences in K.
2. If {c1, . . . cm} are the contraction ratios for {S1, . . . , Sm} then we write ci = ci0ci1 · · · cin for any i =
{i0, . . . , in}. So ci is the ratio of the contraction Si0 ◦ · · · ◦ Sin .

Notice that because of the condition σ(K) ⊂ K we have that if i ∈ Ak, j ∈ Al and ij ∈ Kk+l then i ∈ Kk and
j ∈ Kl. Much of the following material will rely on this simple observation and the following simple Lemma.

Lemma 2.11. A sub-multiplicative sequence is a sequence that satisfies ak+m ≤ akam and for any such
sequence the limit limk→∞(ak)1/k exists and is equal to infk(ak)1/k.

Proof. Given n ∈ N, we can write any k ∈ Z as k = qn + p where q, p ∈ Z and 0 ≤ p < n. Let k ≥ n so by
applying the above q times we get ak ≤ aqnap. Hence

(ak)1/k ≤ aq/kn a1/k
p ≤

(
(an)1/n

)qn/k
a1/k
p

15



2 SELF-SIMILAR SETS 2.2 Sub-Self-Similar Sets

Since there are only finitely many choices for ap, as k → ∞ we get limk→∞(ak)1/k ≤ (an)1/n. Since n was

arbitrary we get limk→∞(ak)1/k ≤ infn a
1/n
n . Hence limk→∞(ak)1/k ≤ infn a

1/n
n ≤ limk→∞(ak)1/k which gives

the result.

The next section is done is slightly more generality than may seem necessary, but this means that the material
is reusable when we get to the Section 3. Let ξ : KF × R≥0 → R be a function that is

1. Sub-multiplicative in i
2. Strictly decreasing and continuous in s.
3. There exist constants 0 < c+, c− < 1 such that ξ(i, s)ckh− ≤ ξ(i, s+ h) ≤ ξ(i, s)ckh+ , where k = |i|.
4. ξ(i, 0) = 1 for all i

This represents a generalisation of the function i, s 7→ csi .

Lemma 2.12. 1. The limit τξ(s) defined as

τξ(s) = lim
k→∞

∑
i∈Kk

ξ(i, s)

 1
k

exists with 0 ≤ τξ(s) <∞ and
∑

i∈Kk ξ(i, s) ≥ τξ(s)k for all k ∈ N.
2. There exists a unique s ≥ 0 such that τξ(s) = 1.

Proof. Submultiplicativity implies that the limit τξ(s) exists and also that
∑

i∈Kk ξ(i, s) ≤
(∑

i∈K1 ξ(i, s)
)k

which implies τξ(s) is bounded since K1 is finite.

By the third property of ξ,

ckh− ≤
∑

i∈Kk ξ(i, s+ h)∑
i∈Kk ξ(i, s)

≤ ckh+

Applying the definition of τξ we get ch− ≤ τ(s + h)/τξ(s) ≤ ch+ for s ≥ 0 and h > 0. So τξ(s)c
h
− ≤

τξ(s + h) ≤ ch+τξ(s) and τξ is decreasing and continuous. Now, by the fourth property of τξ, τξ(0) =

limk→∞ |Kk|1/k ≥ 1. Finally if s ≥ − log n/ log c+ then by submultiplicativity∑
i∈Kk

ξ(i, s)

1/k

≤
∑
i∈K1

ξ(i, s) ≤ ncs+ ≤ 1⇒ τξ(s) ≤ 1

Hence there is a unique s ≥ 0 such that τ(s) = 1.

The following measure on K is key, we will use it to define a measure on Λ and then show it satisfies the mass
distribution principle.

Ms(A) = lim
k→∞

Ms
k(A) where Ms

k(A) = inf

{∑
i

ξ(i, s) : A ⊂
⋃
i

Ii , k ≤ |i| <∞

}

where Ii is the cylinder set of all infinite sequences which agree with i = (i0, . . . , in) on their first n terms. This
is exactly a Method II construction as in lemma 1.4. Moreover, inf{s : Ms(A) = 0} = sup{s : Ms(A) = ∞}
since if Ms(A) <∞, then for any h > 0 and any cover Q with |i| ≤ k for all i ∈ Q.∑

i∈Q

ξ(i, s+ h)) ≤ ck+h
∑
i∈Q

ξ(i, s)

Giving Mt(A) = 0, since ck+h→ 0 as k →∞.
The following lemma is often called Frostman’s Lemma, a proof of which can be found in Rogers[8] Theorem
54. The proof is rather involved, so I will not give it here.

Lemma 2.13. Let A ⊂ AN be a Borel subset and suppose 0 < Ms(A) ≤ ∞ for some s ≥ 0. Then there exists
a compact set A0 ⊆ A and a constant b > 0 such that 0 < Ms(A0) <∞ and Ms(A0 ∩ [i0, . . . , in]) ≤ bcsi for all
i ∈ AN.

Lemma 2.14. The following numbers exist and are equal:

1. The unique s ≥ 0 such that τ(s) = 1

16



2 SELF-SIMILAR SETS 2.2 Sub-Self-Similar Sets

2. inf{s ≥ 0 : Ms(K) = 0} = sup{s ≥ 0 : Ms(K) =∞}
3. inf{s ≥ 0 :

∑∞
k=1

∑
i∈Kk ξ(i, s) <∞} = sup{s ≥ 0 :

∑∞
k=1

∑
i∈Kk ξ(i, s) =∞}

Moreover for this s, Ms(K) ≥ 1

Proof. Equality in 2 was discussed above, and in 3 equality is clear.
1. = 3. Follows since

∑∞
k=1

∑
i∈Kk ξ(i, s) converges if τ(s) < 1 and diverges if τ(s) > 1.

2. ≤ 3. Taking the open cover Kk of K,
∑∞
k=1

∑∞
i∈Kk ξ(i, s) <∞ implies Ms(K) = 0 as

Ms
k(K) ≤

∑
i∈Kk

ξ(i, s) ≤
∞∑
j=k

∑
i∈Kj

ξ(i, s)→ 0 as k →∞

1. ≤ 2. and Ms(K) > 1: Suppose Ms(K) < 1 for some s > 0, then there is a cover U of K by cylinders such
that

∑
i∈U ξ(i, s) < 1. By compactness, we assume U to be finite, and notice that for any t such that 0 < t < s

we still have ∑
i∈U

ξ(i, t) ≤ 1 (2.2)

Now take p = max{|i| : i ∈ U} and define

Uk = {i1i2 . . . ip : ij ∈ U ∀1 ≤ j ≤ p , |i1i2 . . . ip| ≥ k , |i1i2 . . . ip−1| < k}

Now, ∑
i∈U

ξ((i0, . . . , iq)i, s) ≤ ξ((i0, . . . , iq))
∑
i∈U

ξ(i, s) ≤ ξ((i0, . . . , iq), s)

So by induction,
∑

i∈Uk ξ(i, s) ≤ 1. Now, if i ∈ Kk+p, then i = i′j for some i ∈ Ud and |j| ≤ p. Moreover, for any
such i′ there are at most mp choices for such a j (where m is the number of functions in the iterated function
system. Since ξ(i, s) ≤ ξ(i, s) ∑

i∈Kk+p

ξ(i, s) ≤ mp
∑
i′∈Ur

ξ(i′, s) ≤ mp

Since this is true for all k, limr→∞
(∑

i∈Kr ξ(i′, s)
)1/k ≤ 1.

For the rest of this section, ξ(i, s) = csi and we will write τ for τξ. Notice that i, s 7→ csi easily satisfies the
conditions we imposed on ξ:

1. for all s ≥ 0 ∑
i∈Kk+l

csi ≤
∑

i∈Kk , j∈Kl

csij =

∑
i∈Kk

csi

∑
i∈Kl

csi


Hence

∑
i∈Kk csi is a submultiplicative sequence.

2. is obvious.
3. Let c− = mini ci and c+ = maxi ci.
4. is obvious.

We now move on to prove the main theorem of this section, as with most of these techniques, the upper bound
is easy to estimate.

Lemma 2.15.
dimH Λ ≤ dimBΛ ≤ dimBΛ ≤ s

Moreover if Ms(K) <∞ then Hs(Λ) <∞

Proof. If Q is such that K ⊆ ∪i∈QIi where |i| ≥ k for all i ∈ Q, then Λ ⊆ ∪i∈QS(i) so for all δ ≤ ck+.

Hsδ(Λ) ≤
∑
i∈Q

|S(i)|s = |B|s
∑
i∈Q

csi ≤ |B|sMs
k(E)

Now if k →∞, then δ → 0 and we get Hs(Λ) ≤ |B|sMs(K).

Theorem 2.16. If Λ is sub-self-similar with respect to {S1, . . . , Sm}, similarities satisfying the open set con-
dition, and with contraction ratios {c0, . . . , cm}, and s the unique number such that τ(s) = 1, then dimH Λ =
dimBΛ = dimBΛ = s.

We will only prove this for the Hausdorff dimension, and not the box-counting dimension.
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2 SELF-SIMILAR SETS 2.3 Subshifts of Finite Type

Proof. Since we already have the upper bound from Lemma 2.15, it suffices to show Hs(Λ) > 0. By Lemma
2.14 we know that Ms(K) > 0 so by Lemma 2.13 there is a compact subset A of K such that the measure
µ(U) =Ms(A ∩ U) for U ⊂ AN is supported by K and satisfies µ(K) > 0 and

µ(Ii) ≤ bcsi for all i ∈ K (2.3)

Now, set ν(U) = µ{i : S(i) ∈ U} which is a measure by Lemma 1.30. Notice ν is supported by S(K) = Λ.
Now, let V be a feasible open set (as in Definition 2.1), and let U be a subset satisfying 0 < |U | ≤ |V |. Finally,
let Q be the set

Q = {(i0, . . . , ik) : ci0ci1 · · · cik |V | < |U | , ci0ci1 · · · cik−1
}

Now, since c−|U | ≤ |Si(V )| < |U | for i ∈ Q, there are finitely many indices in

Q0 = {i ∈ Q : U ∩ Si(V ) 6= ∅}

Write q0 = |Q0, and notice q0 is independent of U by Lemma 2.2. Notice also that {Si(V ) : i ∈ Q} is a pairwise
disjoint collection of sets (by OSC).
If S(j) ∈ U then j|k ∈ Q for some k so j ∈ Ii for some i ∈ Q0 and then by 2.3

ν(U) =
∑
i∈Q0

µ{j ∈ Ii} ≤ b
∑
i∈Q0

csi ≤ bb1|V |−s|U |s

So since ν is supported by Λ, we are done by the mass distribution principle (Lemma 1.16)

2.3 Subshifts of Finite Type

The next section provides what is sometimes an easier method of calculating the Hausdorff dimension than that
of theorem 2.16 in the case that the subshift used to model the IFS is a subshift of finite type. This technique
is due to L. Block and J. Keesling [7]

Example 2.17. Recall the Modified Sierpiński Triangle of Example 2.19, defined as the sub-self-similar set Λ
with respect to the similarities {S1, S2, S3}, where

S1 = T, S2 = T +

(
1
2
1
2

)
, S3 = T +

(
1
0

)
, where T =

(
1
2 0
0 1

2

)
Where we restrict the order in which we can apply the similarities by not allowing S1 to be composed with itself,
ie. we take the transition matrix

B =

 0 1 1
1 1 1
1 1 1


and then Λ = ∪i∈AN

B
S(i). Using theorem below, we consider the matrix

M(s) =

 0 cs1 cs1
cs2 cs2 cs2
cs3 cs3 cs3

 =
1

2s

 0 1 1
1 1 1
1 1 1

 =
1

2s
B

B has largest real eigenvalue λ = 1+
√

3 so by the theorem below the Hausdorff dimension of our modified triangle
is given by log 1+

√
3/ log 2 ≈ 1.45. (Compare this with the Hausdorff dimension of the regular Sierpiński triangle

log 3/ log 2 ≈ 1.58)

Let S1, . . . , Sm be a set of contractions with contraction ratios {c1, . . . , cm} and Λ a sub-self-similar set with
respect to S1, . . . , Sm. Then let K ⊆ AN be the subshift given by lemma 2.9, such that K ⊆ σ(K) and
Λ = S(K). Let ρ be the metric on A associated to {c1, . . . cm}

Theorem 2.18. If K is a subshift of finite type given by K = AB for some transition matrix B = (bij) then
dimH(Λ) = β, where β is the unique value of s for the which the matrix M(s) = (bijc

s
j)ij has largest real

eigenvalue λ = 1.

Proof. We prove this in the case where all the ci satisfy ci <
1
2 , the general case can be proved by reducing to

this case, via redefining the metric ρ on AN. We also will only prove it in the case where the graph associated to
the matrix A is strongly connected (there is a path from every vertex to every other vertex), as this simplifies
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3 SELF-AFFINE SETS

the proof greatly. A full proof can be found in Block&Keesling [7]. Now, notice that Bk(s)x,y is the number of
’length-k paths’ from x to y on the directed graph determined by B, and that

Mk(s)i,j =
∑
i∈Kk

ci1 · · · cik with i0 = x , ik = y

This then gives that

(cs1c
s
2 · · · csn)M(s)k−1


1
1
...
1

 =
∑
i∈Kk

cki

So

τ(s) = lim
k→∞

(c21c22 · · · csn)M(s)k−1


1
1
...
1




1
k

Now since the graph associated to A is strongly connected, M(s)k is a non-negative irreducible real matrix, and
by the Perron-Frobenius Theorem it has a largest real eigenvalue λ with limk→∞M(s)k/λk = vwT , where all
elements of v and w are non-negative. So

lim
k→∞

λ−k (c21c22 · · · csn)M(s)k


1
1
...
1


 = a0 ⇒ lim

k→∞

(c21c22 · · · csn)M(s)k


1
1
...
1


 = lim

k→∞
a0λ

k

For a0 some positive constant. Hence τ(s) = 1 if and only if the largest eigenvalue of M(s) is 1. By Theorem
2.16 of the previous section, we know the Hausdorff dimension of Λ is the unique value of s such that τ(s) = 1,
which completes the proof.

Example 2.19. Let Si = Ti + ai be contracting similarities given by the following.

Ti =

(
1
3 0
0 1

3

)
for all i

a1 =

(
0
0

)
, a2 =

(
1
3
0

)
, a3 =

(
2
3
0

)
, a4 =

(
0
1
3

)
a5 =

(
2
3
1
3

)
, a6 =

(
0
2
3

)
, a7 =

(
1
3
2
3

)
, a8 =

(
2
3
2
3

)
Notice that if we allowed all combinations, this would give a regular Sierpiński carpet. Now let AB be the subshift
of finite type generated by the following directed graph, and denote the transition matrix of this graph B.

1
�� ((

�� ��>>>>>>> 2
�� ((

3
((jj 4
��

hh

��
8

OO

7EE
oo

VV

6oo

OO

5EE
oo

The matrix M(s) = (bi,jc
s
j) = 1

3sB, and B has largest real eigenvalue λ ≈ 2.4652, so by theorem 2.18 it has
Hausdorff dimension dimH Λ ≈ 0.8213.

3 Self-Affine Sets

In this section we remove the open set condition and restrict to the case where the Si are affine transformations,
ie. Si(x) = Ti(x)+ai where Ti : Rn → Rn are linear maps and ai ∈ Rn. We will usually write a = (a1, . . . , am) ∈
Rnm when we want to refer to all the translations at once. We can still work with subshifts K ⊆ AN which
correspond to sub-self-similar sets via Lemma 2.9. A self-similar set generated by an iterated function system
of affine transformations is called a self-affine set.
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3 SELF-AFFINE SETS 3.1 The Singular Value Function

Figure 7: Modified Sierpiński Carpet from transition matrix B: dimH(Λ) ≈ 0.8213

From here on we fix a subshift K, fix the Ti and write Λ(a) for the invariant set corresponding to Ti = Si + ai.
We will also write Sa for the map S as in previous sections corresponding to a. Ideally we want an explicit
formula dependant on the Ti and ai, but a general solution of this kind does not currently exist. There is
however a result by Falconer which gives the Hausdorff dimension in terms of the Ti for almost all a.

Example 3.1. Firstly an example of just how badly behaved self-affine sets can be, consider the transformations

T1 = T2 =

(
1
3 0
0 1

2

)
a1 =

(
0
1
4

)
a2 =

(
2
3
1
4

)
This gives Λ = C × { 1

2} ⊂ [0, 1]2, ie. a cantor set, so we know by previous calculations that

Figure 8: dimH(Λ) = log 2/ log 3

dimH(Λ) = log 2/ log 3 ≈ 0.63.
However, if we adjust the values of ai in the affine transformations to

a1 =

(
0
1
2

)
a2 =

(
2
3
1
4

)
Then the Hausdorff dimension of the new limit set Λ̃ as dimH(Λ̃) ≥ dimH(proj(Λ̃)) = 1, where proj is projection

onto the second coordinate (by lemma 1.11, since the projection map is Lipschitz). Notice that although both
transformations have the same Ti the change in ai causes a substantial change in the Hausdorff Dimension. In
fact the situation is worse than this, the main theorem of this section will show that dimH Λ(a) is a constant
for almost all a with respect to the Lebesgue measure on Rnk. Combining the above example with that theorem
shows dimH(Λ(a)) is not continuous in a.

3.1 The Singular Value Function

Firstly we just need a quick aside on the Singular Value Decomposition of matrices (a discussion of this can
be found in Strang&Gilbert[13]). If a matrix T is real valued and non-singular, T admits a factorisation
T = P1ΣP ∗2 , where P1 and P2 are orthogonal real-valued matrices and Σ is diagonal real-valued matrix. Now,
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3 SELF-AFFINE SETS 3.1 The Singular Value Function

Figure 9: dimH(Λ̃) ≥ 1

T ∗T = P2Σ∗P ∗1 P1ΣP ∗2 = P2Σ∗ΣP ∗2 , so since Σ∗Σ is a diagonal matrix with α2
1, . . . , α

2
n on the diagonal, it is

clear that the αi are the square roots of the non-zero eigenvalues of TT ∗ and T ∗T , and the columns of P1 are
an orthogonal eigenbasis. Writing P1 for the columns of P1 and P2 for the columns of P2, notice that P1 and P2

form two orthogonal bases with the property that the map T takes the ith element of P1 to a non-zero multiple
of the ith element of P2.
The diagonal elements of Σ are known as the Singular Values of T , and correspond to the lengths of the semi-axis

of the ellipsoid T (B) where B is the unit ball. For example the singular value decomposition of T =

(
1 0
1 1

)
is (

1 0
1 1

)
= P1ΣP2 ≈

(
−0.52573 −0.85065
−0.85065 0.52573

)(
1.61803 0

0 0.61803

)(
−0.85065 −0.52573
−0.52573 0.85065

)
So the singular values of T are {0.61803, 1.61803}. Notice that P1 is a reflection in the y-axis, and a rotation of
1.0172 about the origin, P2 is a reflection in the y-axis and a rotation of 0.5536 about the origin.
Much of the proof revolves around studying what Falconer calls the singular value function, defined below.

Definition 3.2. Let {αi}ni=0 be the lengths of the semi-axis of T (B), where B is the unit ball in Rn. Order the
αi such that 0 ≤ αn ≤ . . . α1 < 1. The singular value function is defined as

φs(T ) =

{
α1α2 . . . αm−1α

s−m+1
m where s ≤ n

(α1α2 . . . αn)s/n = (detT )s/n s > n

Where m− 1 < s ≤ m,m ∈ N

Lemma 3.3. 1. φs is continuous and strictly decreasing in s.
2. If s ∈ N, with 0 ≤ s ≤ n, then φs(T ) = α1 · · ·αs = supLs(T (E))/Ls(E), where the supremum is over the

set of s-dim ellipsoids in Rn and Ls denotes the s-dimensional Lebesgue measure.
3. φs is submultiplicative, ie. φs(TU) ≤ φs(T )φs(U) for all T,U ∈ L(Rn,Rn).

Note than when we speak of the s-dimensional ellipsoid in Rn, we mean an ellipse in some s-dimensional
hyperplane of Rn, and identifying that hyperplane with Rs gives us the s-dimensional Lebesgue measure of that
ellipsoid.

Proof. 1. Since the transformations P1 and P2 are orthogonal, they preserve area and hence it is sufficient to
consider the effect of Σ on an arbitrary s-dimensional ellipsoid. Now, if E is the unit ball in Rs ⊂ Rn then
Ls(Σ(E)) = α1, . . . , αs. (We are assuming that α1, . . . , αs are the first s entries in the diagonal matrix
Σ). If E is an arbitrary s-dimensional ellipsoid in some other hyperplane in Rn then it is clear that T will
shrink E by a greater amount since the singular values smaller than αs will have an effect.

2. If E is an s-dimensional ellipsoid, s ∈ N and 1 ≤ s ≤ n, then

Ls(TU(E)) ≤ φs(T )Ls(U(E)) ≤ φs(T )φs(U)Ls(E) (3.1)

Applying this to 2. gives the result. Now, if s ∈ R and 0 < s < n then let m be the integer such that
m− 1 < s ≤ m so

φs(T ) = α1 · · ·αm−1α
s−m+1
m = (α1 · · ·αm)s−m+1(α1 · · ·αm−1)m−s = (φm(T ))

s−m+1 (
φm−1(T )

)m−s
So applying the above to (3.1) gives the result.
Finally if s > n, then φs(TU) = det(TU)s/n = det(T )s/n det(U)s/n = φs(T )φs(U).
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3 SELF-AFFINE SETS 3.1 The Singular Value Function

Lemma 3.4. Let s /∈ N, 0 < s < n. Then there exists a number c <∞ dependant on n,s and r such that∫
Br

dx

‖Tx‖s
≤ c

φs(T )

for all non-singular T ∈ L(Rn,Rn), where L denotes linear mappings and Br is the ball of radius r in Rn

Proof.

I =

∫
Br

dx

< Tx, Tx >s/2
=

∫
Br

dx

< x, T ∗Tx >s/2
=

∫
Br

d(x1 · · ·xn)

< (x1, . . . , xn), (α2
1x1, . . . , α2

nxn) >s/2

=

∫
· · ·
∫
Br

dx1 · · · dxn
(α2

1x
2
1 + · · ·+ α2

nx
2
n)s/2

where T ∗ is the adjoint operator of T, and x1, . . . , xn are coordinates in the direction of the eigenvectors of T*T
(see the remark at the beginning of the section). Substituting yi = αixi/r to give

I ≤
∫
· · ·
∫
Br

dx1 · · · dxn
rs(y2

1 + · · · y2
n)s/2

≤
∫
· · ·
∫
P

rn−sα−1
1 · · ·α−1

n dx1 · · · dxn
(y2

1 + · · ·+ y2
n)s/2

where P = {y = (y1, . . . , yn) : |yi| ≤ αi}. Next let m ∈ N be such that m− 1 < s ≤ m and write

P1 = {y ∈ P : y2
1 + · · ·+ y2

m ≤ 4α2
m} , P2 = {y ∈ P : y2

1 + . . .+ y2
m−1 > α2

m}

so P ⊂ P1 ∪ P2 since |ym| ≤ αm in P. Hence

rs−nα1 · · ·αnI ≤
∫
· · ·
∫
P1

dy1 · · · dyn
(y2

1 + · · · y2
m)s/2

+

∫
· · ·
∫
P2

dy1 · · · dyn
(y2

1 + · · · y2
m)s/2

By transforming the first m, and m-1 coordinates respectively into polar coordinates we get

rs−nα1 · · ·αnI ≤
∫ 2π

0

· · ·
∫ 2π

0

∫ 2αm

0

∫
· · ·
∫
D1r

−sdθ1 · · · dθm−1 dr dym+1 · · · dyn

+

∫ 2π

0

· · ·
∫ 2π

0

∫ ∞
am

∫
· · ·
∫
D2r

−sdθ1 · · · dθm−2 dr dym · · · dyn

where D1 = rm−1 sinm−2 θ1 sinm−3 θ2 . . . sin θm−2 and D2 = rm−2 sinm−3 θ1 . . . sin θm−3

rs−nα1 · · ·αnI ≤ c1αm+1 · · ·αn
∫ 2αm

0

r−srm−1dr + c2αm · · ·αn
∫ ∞
am

r−srm−2dr

≤ c′1αm+1 · · ·αnαm−sm + c′2αm · · ·αnαm−s−1
m

where c1, c2, c
′
1, c
′
2 are constants independent of α. So

Irs−n ≤ c′1(α1 . . . αm−1α
s−m+1
m )−1 + c′2(α1 . . . αm−1α

s−m+1
m )−1 =

(c′1 + c′2)

φs(T )

The next lemma was originally proved by Falconer for the case ‖Ti‖ < 1
3 , but then improved by Solomyak[12]

to the case ‖Ti‖ < 1
2 . A discussion of this condition follows in section 3.3

Lemma 3.5. If s /∈ N, 0 < s < n and η < 1
2 where η = maxi ‖Ti‖, then there exists some c <∞, such that for

all i 6= j ∈ AN ∫
a∈Br⊂Rnk

da

|Sa(i)− Sa(j)|s
≤ c

φs(Tp)

where p = i ∧ j denotes the longest subsequence which agrees with i and j.

Proof. Write i = p, i′, j = p, j′ and p = |p|. Suppose (without loss of generality) also that the first terms of i′

and j′ are 1 and 2 respectively. Now

Sa(i′)−Sa(j′) = a1−a2 +
(
Ti′1ai′2 + Ti′1Ti′2ai′3 + · · ·

)
−
(
Tj′1aj′2 + Tj′1Tj′2aj′3 + · · ·

)
= a1−a2 +E1(a1)+ . . . Em(am)
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3 SELF-AFFINE SETS 3.2 Falconer’s Theorem

where the Ei are linear transformations Rn → Rn. Now, we can choose α = 1 or 2 such that for some 2 ≤ n ≤ ∞,
i′k and j′k are not both equal to α for all k < n and (if α <∞) i′n 6= α 6= j′n. Hence

|Eα| ≤
n−1∑
k=2

ηk−1 +

∞∑
k=n+1

2ηk−1 ≤ η

1− η
< 1

Since η < 1
2 . Also notice that by the standard result on linear operators (see Eidelman, Milman and Tsolomitis

[16] Section 4.7) ‖±1 +Eα‖ < 1 is invertible and ‖(±1 +Eα)−1‖ < (1−η)/(1−2η). Without loss of generality,
assume ‖1 + Eα‖ is invertible, and take the coordinate transformation (where β = 1− α)

y = (aα + Eα(aα))− aβ + Eβ(aβ)− a3 + E3(a3)− . . . , aβ = aβ , a3 = a3 · · · ak = ak

Noticing that(
‖(aα + Eα(aα))− aβ + Eβ(aβ)− a3 + E3(a3)− . . . ‖ < (2 + k)r and ai ∈ Bnr ∀i 6= α

)
⇒ (a1, . . . ak) ∈ Bnkr

We can obtain∫
a∈Bnk

r

da

|Sa(i)− Sa(j)|s
=

∫
a∈Bnk

r

da

Tp(Sa(i′)− Sa(j′))s
≤
∫
y∈B(2+k)r

ai∈Bn
r

dy daβ da3 · · · dak
|Tp(y)|s

≤ c

φs(Tp)

Where the final inequality follows from Lemma 3.4.

3.2 Falconer’s Theorem

We define a measure on the sequence space using a very similar method to in the sub-self-similar section.

Ms
k(A) = inf

{∑
i

φs(Ti) : A ⊆
⋃
i

Ii , |i| ≥ k

}
and Ms(A) = lim

k→∞
Ms
k(A)

Which is a countably-subadditive measure by Method II (Lemma 1.4). In fact, this is the construction in section
2.2, with ξ(i, s) = φs(Ti). Indeed this choice of ξ satisfies our four conditions

1. By lemma 3.3
2. By lemma 3.3
3. Let c− = αn and c+ = α1

4. Is clear since φs(T ) = 0 for all T.

We can then conclude the following version of Lemma 2.14

Lemma 3.6. The following numbers all exist and are equal:

1. inf {s : Ms(K) = 0} = sup {s : Ms(K) =∞}
2. The unique s > 0 such that τ(s) = limk→∞

(∑
i∈Kk φs(Ti)

)1/k
= 1.

3. inf
{
s :

∑
i∈KF φs(Ti) <∞

}
= sup

{
s :

∑
i∈KF φs(Ti) =∞

}
We now proceed to prove the main theorem of this section, this upper bound is proved in a similar way as
Theorem 2.4.

Lemma 3.7. If Mt(K) < ∞ then Ht(Λ(a)) < ∞ and in particular dimH Λ(a) ≤ s where s is the unique
number such that τ(s) = 1.

Proof. Given some δ > 0 there exists r such that |S(i)| < δ for all |i| > r. Choose a covering set U of K such
that |i| ≥ r for each i ∈ U . So Λ(a) ⊆ ∪i∈US(i).
For i ∈ KF , S(i) is contained in a fixed parallelepiped P with sides of length 2|B|α1, . . . , 2|B|αn. If m is the
integer such that m− 1 < s ≤ m we divide P into at most(

4|B| α1

αm

)
· · ·
(

4|B|αm−1

αm

)
(4|B|)n−m+1

cubes of side length αm, ie. diameter
√
nαm.

inf{
∑
|Ui|s : Ui a

√
nδ cover of Λ(a)} ≤

∑
i∈U

{(4|B|)nα1α2 . . . αm−1α
1−m
m (

√
nαm)s

≤ (4|B|
√
n)n

∑
i∈U

φs(Ti)

Taking the infimum over both all such sets U gives inf{
∑
|Ui|s : Ui a

√
nδ cover of Λ(a)} ≤ (4|B|

√
n)nMs

r(K).
Now, letting δ → 0, so r →∞ gives Hs(Λ(a)) ≤Ms(K) by Lemma 3.6.
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3 SELF-AFFINE SETS 3.2 Falconer’s Theorem

Now, we start work on the lower bound, which will use thermodynamic formalism. As a preliminary, notice
that Sa(i) is continuous in a for fixed i. This follows since we could have defined Sa by taking

Sa(i) =

∞⋂
r=0

Si0 ◦ · · · ◦ Sir (z) = lim
r→∞

(Ti0 + a0) ◦ · · · ◦ (Tir + ar)(0)

(In fact we could chose any vector including 0, but 0 suits the following calculation). So

Sa(i) = lim
r→∞

a0 + Ti0(a1) + Ti0 ◦ Ti1(a2) + Ti0 ◦ Ti1 ◦ · · · ◦ Tir−1
(ar)

|Sa(i)− Sb(j)| =
∣∣∣ lim
r→∞

a0 − b0 + Ti0(a1)− Ti0(b1) + . . .+ Ti0 ◦ Ti1 ◦ · · · ◦ Tir−1
(ar)− Ti0 ◦ Ti1 ◦ · · · ◦ Tir−1

(br)
∣∣∣

≤
∞∑
r=0

αr1 max
i
{ai − bi} = Bmax

i
{ai − bi}

For some constant B, since |Ti0 ◦ · · · ◦ Tik(ak+1)− Ti0 ◦ · · · ◦ Tik(bk+1)| ≤ αk1 |ak+1 − bk−1| and α1 < 1.

Lemma 3.8. Suppose µ is a measure on the Borel σ-algebra B of AN with 0 < µ(K) <∞ and for some s < n∫
K

∫
K

∫
a∈Br⊂Rnk

da dµ(i) dµ(j)

|Sa(i)− Sa(j)|2
<∞

then for almost all a ∈ Br (in the Lebesgue measure sense) we have that dim Λ(a) ≥ s

Proof. Notice (i, j, a) 7→ min {r, |Sa(i)− Sa(j)|−s} is a continuous function in i, j and a for any fixed r. This
function is measurable since µ × µ × µL is a metric countably sub-additive measure, since it is a product of
metric measures (where µL is the Lebesgue measure). For such measures continuous real valued functions are
measurable (see [20]Theorem 19.1). Now define

ψ(a, i, j) = lim
r→∞

min{r, |S(i)− S(j)|−s}

ψ is Borel measurable on Rnk ×K ×K (by [20] Theorem 20.3), so by Fubini’s theorem (see [20] Thm 29.7) for
almost all a ∈ Br ∫

K

∫
K

dµ(i)dµ(j)

|Sa(i)− Sa(j)|s
<∞

For these a we define ν on Rn by ν(U) = µ{i : Sa(i) ∈ U}. This is a measure when restricted to the Borel
σ-algebra, by lemma 1.30. Moreover, ν is supported by Λ(a). So Λ(a) supports a mass distribution satisfying
the conditions of Thermodynamic Formalism (Lemma 1.20) and we may conclude Λ(a) ≥ s.

Theorem 3.9. If |Ti| < 1
3 , for 1 ≤ i ≤ m. Then for almost all a ∈ Rnm, dimH Λ(a) = min{n, d(T1, . . . , Tk)},

where d(T1, . . . , Tk) = inf{s :
∑
i∈J φ

s(Ti) <∞}

Proof. If t /∈ N, 0 < t < min{n, d(T1, . . . , Tk)} and choose s such that t < s < min{n, d(T1, . . . , Tk)}. Now
Ms(K) =∞ so by Lemma 2.13 there is a compact set K ⊂ AN such that 0 <Ms(K) <∞ and for all i ∈ AF .

Ms(K ∩ Ii) ≤ c1φs(Ti) (3.2)

Now we define a measure µ on AN by µ(A) =Ms(K∩A) so µ(Ii) ≤ c1φs(Ti) for all i ∈ AF . Recall that sinceM
was a measure constructed via Method II, Borel sets areM-measurable, and hence Borel sets are µ-measurable
also. Now by Lemma 3.5∫

K

∫
K

∫
a∈Br

da dµ(i) dµ(j)

|Sa(i)− Sa(j)|t
≤ c

∫
K

∫
K

φt(Ti∧j)
−1dµ(i)dµ(j) ≤ c

∑
p∈AF

∑
i6=j

φt(Tp)−1µ(Ip,i)µ(Ip,j)

≤ c
∑

p∈AF

φt(Tp)−1µ(Ip)2 ≤︸︷︷︸
By (3.2)

cc1

∞∑
r=1

∑
p∈Ar

φt(Tp)−1φs(Tp)µ(Ip) ≤︸︷︷︸
See † below

cc1

∞∑
r=1

∑
p∈Ar

br(s−t)µ(Ip)

≤ cc1µ(K)

∞∑
r=1

br(s−t) <∞

For † notice that for any u, v > 0, φu+v(T ) ≤ φu(T )bv so φu(T ) ≥ φu+v(T )/bv, where b is the largest singular
value of T. Hence φt(T ) ≥ φt+(s−t)(T )bt−s = φs(T )bt−s and φs(T )φt(T )−1 ≤ bs−t.
So by the previous lemma, dim Λ(A) ≥ t for almost all a ∈ Br, and as r is arbitrary, dim Λ(a) ≥ t for almost all
a ∈ Rnk. This is true for all t /∈ N with t < min{n, d(T1, . . . , Tk)} so the theorem follows from the lower bound
in Lemma 3.7.
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3 SELF-AFFINE SETS 3.3 Remarks on Falconer’s Theorem

Example 3.10. Consider the self-affine set given by the transformations

T1 = T2 =

(
1
2 0
0 1

2

)
, T3 =

1

2

(
cos(π4 ) sin(π4 )
− sin(π4 ) cos(π4 )

)

a1 =

(
0
0

)
, a2 =

(
1
2
0

)
, a3 =

(
1
4
1
4

)
The singular values of the Ti are 1/2 for all of them, which is too large for a calculation by Theorem 3.9, but

Figure 10: The first three stages in the construction of the invariant set Λ of Example 3.10 starting from the
compact set [0, 1]× [0, 1].

we can get around this by considering the iterated function system {Si ◦Sj : 1 ≤ i, j ≤ 3} which determines the
same invariant set. The singular values of these functions are then all 1/4. Hence

τ(s) = lim
k→∞

(
9k

1

4ks

)1/k

= 9 · 4−s

and by Theorem 3.9, almost surely dimH(Λ) = log 9/ log 4.

Example 3.11. The following pictures are all given by the following linear maps with different choices of
translations.

T1 = T2 =
3

10

(
0.866 −0.5
0.5 0.866

)
, T3 = T4 =

3

10

(
0.866 0.5
0.5 −0.866

)

Figure 11: Three invariant sets generated by the same linear maps with different choices of translation. The
Hausdorff dimension of these invariant sets is almost always ≈ 1.1514 by Theorem 3.9.

3.3 Remarks on Falconer’s Theorem

3.3.1 A counter-example for ‖Ti‖ < 1/2 + ε

Solomyak [12] provides an example to show that Theorem 3.9 fails for ‖Ti‖ < 1/2 + ε. If T1 = T2 =

(
1
2 0
0 λ

)
then d(T1, T2) = 2− log(1/λ)/ log 2. Now if a1, a2 don’t lie on the same horizontal or vertical line, then it has
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3 SELF-AFFINE SETS 3.3 Remarks on Falconer’s Theorem

been shown by Przytycki and Urbański[19], that dimH Λ(a) < 2 − log(1/λ)/ log 2 if λ is a reciprocal of a PV
number. Recalling that a PV number is an algebraic integer (a root of a monic polynomial in Z) is an algebraic
integer larger than 1 whose algebraic conjugates all have modulus less than 1. We can find a sequence of PV
numbers approaching 2 from below, giving a sequence of λ > 2 but arbitrarily close, this completes the example.

3.3.2 An alternative condition to ‖Ti‖ < 1/2

Solomyak [12] gives an alternative condition to ‖Ti‖ < 1/2 in the self-affine case, for which Theorem 3.9 still
holds. Let

B =


∞∑
j=0

fjx
j : fj ∈ {−1, 0, 1}

 and D = {λ ∈ D : ∀f ∈ Br , f 6= 0 , f(λ) 6= 0}

where D ⊂ C is the open unit disc. Solomyak then proves that the result holds if Ti = T for all i, and all
eigenvalues of T lie in D. The proof uses techniques from complex analysis to give an alternative proof of
Lemma 3.5 with the above hypothesis.

3.3.3 Self-Affine Sets in R2

Heuter and Lalley[14] give the follows list of conditions for iterated function systems in R2 which guarantee
that the point a is not in the set of measure zero for which Falconer’s theorem fails.

1. (Contractivity) ‖Ti‖ < 1 for all i

2. (Distorsion) α2
1(Ti) < α2(Ti) for α1(Ti) ≥ α2(Ti) the lengths of the semi-axis of Ti

3. (Separation) Let Q2 be the closed second quadrant R 2 (0,0); then the sets T (Qi) are pairwise disjoint
subsets of the interior of Qi.

4. (Closed set condition) There exists a bounded open set O such that A1(O), . . . , Ak(O) are pairwise disjoint
closed subsets of O.

Their proof uses techniques from ergodic theory to construct a suitable measure which can be used alongside
thermodynamic formalism.

3.3.4 The Hausdorff Dimension of Exceptional Sets

Falconer and Miao[15] estimate the Hausdorff dimension of the so-called exceptional sets

E(s) =
{
a ∈ Rnk : dimH Λ(a) < s

}
to give the following

Theorem 3.12. If ‖Ti‖ < 1
2 for all i, 0 < s ≤ min{n, d(T1, . . . , Tk)} and for any s > 0

qs = nk −
log
(

limk→∞
(∑

i∈K φ
s(Ti)

) 1
k

)
log λ

Then
dimHE(s) ≤ max{nk − (n− s), qs}

Their proof revolves around a clever alteration to the definition of Ms and uses many of the same techniques
as found in Section 3.

3.3.5 Upper Triangular matrices

In general, the formula of theorem 3.9 can be very hard to calculate. There is a simplification however in the
case where all the linear maps are given by upper triangular matrices. If we write

Ti =


ti1 ti12 · · · t1n
0 t2 · · · ti2n
...

...
...

0 0 · · · tin


With the notation that }j1, . . . , jk{ represents a set of m distinct integers in {1, . . . ,m}, then Falconer and Miao
have shown in [18] that the following holds. Falconer and Miao use the exterior algebra to give results about
the connection between the singular value function and minors of upper triangular matrices.
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4 QUASI-SELF-SIMILAR SETS

Theorem 3.13.

d(T1, . . . , Tm) =

s : max
}j1,...,jm−1{
}j′1,...,j

′
m{

m−1<s≤m

{
|t1j1 · · · t

1
jm−1
|m−s|t1j′1 · · · t

1
j′m
|s−m+1 + |tNj1 · · · t

N
jm−1
|m−s|tNj′1 · · · t

N
jm |

s−m+1
}

4 Quasi-Self-Similar Sets

4.1 Implicitly Calculating the Hausdorff Dimension

Previously we concentrated on methods of estimating the Hausdorff dimension directly, the following results
follow a different tack, giving implicit conditions for the Hausdorff and Box counting dimensions to coincide.
This can be useful very given that the Hausdorff dimension may be very tricky to calculate where as the box
dimension is often significantly easier. The idea is based on what Falconer calls quasi-self-similarity or re-
normalization. Roughly speaking we ask for a condition on a set F that says “large” neighbourhoods look very
similar to “small” neighbourhoods of F . Both these theorems were first proved by Falconer in [21], improving
apon the results of Laughlin in [25], and will turn out to have many useful applications.

Theorem 4.1. If F is a set with dimH(F ) = s and constants a, r0 > 0 such that for any N ⊆ F with |N | < r0

there exists a mapping φ : N → F satisfying

ad(x, y) ≤ |N |d(φ(x), φ(y)) for all x, y ∈ N (4.1)

then dimH(F ) = dimB(F ) = dimB(F ).

Proof. Suppose s > dimH(F ) (so Hs(F ) = 0). Now choose an open cover {Ui}ni=1 of F by sets of diameter
at most min{a/2, r0} and such that

∑n
i=1 |Ui|s < as. By assumption there exist maps φi : Ui → F such that

ad(x, y) ≤ |Ui|d(φi(x), φi(y)) for all x, y ∈ Ui. Consider the inverse maps φ−1
i and model their action using the

shift space in the following way: Let A = {1, . . . , n} and define U : AF → F by (i0, . . . , iq) 7→ φ−1
i0
◦ · · ·◦φ−1

iq
(F ).

Note that U(i) may be empty if the domain and codomain of φ−1
ij

and φ−1
ij+1

and do not overlap for some

0 ≤ j ≤ q − 1. Now if x, y ∈ U((i0, . . . , iq)) then by (4.1)

d(x, y) ≤ a−1|Uiq |d(φiq (x), φiq (y)) ≤ · · · ≤ a−q|Uiq | · · · |Ui0 |d(φi0 ◦ · · · ◦ φiq (x), φi0 ◦ · · · ◦ φiq (y))

Thus |U((i0, . . . , iq))| ≤ a−q|Ui0 | · · · |Uiq |F |
Next let 0 < b < min a−1|Ui| and notice max a−1|Ui| < 1/2 (we chose the Ui initially so this would be true), fix
0 < ε < |F | and for each (i0, . . . , iq, . . .), curtail the sequence at the least value q such that

bε <
(
a−1|Ui0 |

) (
a−1|Ui1 |

)
· · ·
(
a−1|Ui1 |

)
|F | ≤ ε

and hence
bsεs <

(
a−s|Ui0 |s

) (
a−s|Ui1 |s

)
· · ·
(
a−s|Uiq |s

)
|F |s ≤ εs (4.2)

Let S be the set of such curtailed sequences. Recalling that at the beginning we asked that
∑n
i=1 |Ui|s < as, ie.

that
∑k
i=1

(
a−1|Ui|

)s
< 1, combining this with (4.2) gives

bsεs|S| <
∑

i1,...,iq∈S

(
a−1|Ui0 |

)s (
a−1|Ui1 |

)s · · · (a−1|Ui1 |
)s |F |s < |F |s

Hence |S| < |F |s(bε)−s and F is covered by at most |F |s(bε)−s sets of diameter at most ε. Using the notation
of Section 1.3 where Nε(F ) denotes the smallest number of sets of diameter at most δ needed to cover F , this
gives Nε(F ) < |F |s(bε)s so

dimB(F ) = lim sup
ε→0

logNε(F )

− log ε
≤ s

Hence dimB(F ) ≤ dimH(F ) and since it is always the case that dimH(F ) ≤ dimB(F ) ≤ dimB(F ) this gives the
result.

We now prove an analagous result, whereas the previous Theorem required a mapping from some small portion
of F onto F , this requires a mapping going in the other direction but satisfying similar properties. The following
Theorem also allows us to deduce the useful fact that Hs(F ) < ∞. Interestingly the two are proved in very
different ways, the previous proof using the condition (4.1) to obtain a bound on dimB(F ) using an open cover
that was ‘small’ in the sense of Hausdorff dimension. This next theorem assumes that the Hausdorff and Box
counting dimensions differ and uses (4.3) this to construct a measure on F . Notice also that the argument at
the end is very similar to that used in the Mass Distribution Principle (Lemma 1.16).
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Theorem 4.2. If F is a set with dimH(F ) = s and constants c, r0 such that for any ball B in F of radius r < r0

there exists a mapping ψ : F → B satisfying

crd(x, y) ≤ d(ψ(x), ψ(y)) for all x, y ∈ F (4.3)

then dimH(F ) = dimB(F ) = dimB(F ) and Hs(F ) <∞.

Proof. Recall the notation from section 1.3 that Ñε(F ) is the largest possible number of disjoint balls of radius
ε and centers in F . We assume that there exists some ε < min{c−1, r0} such that n = Ñε > c−sε−s. Then
choose a t > s such that

Ñε(F ) > c−tε−t (4.4)

Let B1, . . . , Bn be closed disjoint balls of radius ε with centers in F and let δ = mini 6=j d(Bi, Bj) > 0. By
assumption there exist mappings ψi : F → Bi for each 1 ≤ i ≤ n which satisfy cεd(x, y) ≤ d(ψi(x), ψi(y)) for
all i, j ∈ F . We regard these ψi like an iterated function system (although they may not be contractions). Let
A = {1, . . . , n} and define a map η on AF by

η((i0, . . . , iq)) = φi0 ◦ φi1 ◦ · · · ◦ φiq (F )

Notice that d(η((i0, . . . , iq)), η((j0, . . . , jq))) ≥ (cε)m−1d(Bim , Bjm) ≥ (cε)qδ where m is the position in which
(i0, . . . , iq) and (j0, . . . , jq) first differ.
Define a measure µ on F by first defining it as a premeasure on the subsets η((i0, . . . , iq)) via µ (η((i0, . . . , iq))) =
n−q and extending this via Method I (Lemma 1.2) to a measure on F . Now for any subset U ⊆ F with
|U | < c ≤ δ, let q be the least integer such that

(cε)qδ > |U | ≥ (cε)q+1δ (4.5)

Now U intersects at most one Bi, so

µ(U) ≤ n−q ≤︸︷︷︸
by (4.4)

(cε)qt ≤︸︷︷︸
by (4.5)

(cεδ)−t|U |t

Now suppose F is covered by an open cover {Ui}∞i=1 with |Ui| < cεδ so

1 = µ(F ) ≤
∞∑
i=1

µ(Ui) ≤ (cεδ)−t
∞∑
i=1

|Ui|t

This implies Ht(F ) > 0, which is a contradiction since t > s and dimH(F ) = s. Hence our original assumption
was incorrect, and for small ε, Ñε(F )εs ≤ c−s so

dimB = lim sup
ε→0

log Ñε(F )

− log ε
≤ s

To see that Hs(F ) < ∞, notice that given a maximal (finite) set of disjoint balls with centers in F if we take
the same centers but with twice the radius they form a cover of F .

It is interesting to compare this theorem to the results about iterated function systems we proved earlier in
section 2, without the open set condition we can still say that the Hausdorff and box-counting dimensions
coincide and that the s-dimensional Hausdorff measure is positive and finite, without being able to actually
calculate the Hausdorff dimension.

Theorem 4.3. Given an IFS of similarities {Si}mi=0 with ratios 0 < ci < 1 and invariant set Λ then dimH Λ =
dimBΛ = dimBΛ and Hs(Λ) <∞ where s = dimH(Λ)

Proof. Let z ∈ Λ and i = (i0, . . . , in, . . .) be the sequence such that S(i) = z. Now Given any r < |F | there
exists a least integer q such that

c−r ≤ ci0 · · · ciq |F | ≤ r

where c− = mini ci. Now, writing ψ(x) = Si0 ◦ · · · ◦ Siq (x) we may combine the above with the fact that ψ is a
similarity to get

ard(x, y) ≤ d(ψ(x), ψ(y))|F | ≤ rd(x, y)

Now let x = ψ−1(z) and it is clear that ψ maps F into B(z, r). We may now apply Theorem 4.2 to obtain
dimH(Λ) = dimB(Λ) = dimB(Λ) and Hs(Λ) <∞.

28



4 QUASI-SELF-SIMILAR SETS 4.2 Dynamical Repellers

4.2 Dynamical Repellers

An interesting example of the use of the previous theorems is the following. In this section we will be work-
ing with Riemannian manifolds, although the reader unfamiliar with such things can simply think of this as
manifolds M and N as Rn for some n and the pull-back of a map f : M → N as the usual derivative.

Definition 4.4. A map T : M → M is C1+α if its pull-back f∗ satisfies the Hölder condition of exponent α
(see Lemma 1.9).

Definition 4.5. Given f : M →M a C1+α map, we say a compact set J ⊆M is a (mixing) repeller for f if it
satisfies

1. f is expanding on J ie. there exist constants c > 0 and α > 0 such that ‖(Dxf
n)u‖ ≥ cαn‖u‖ for all x ∈ J ,

n ≥ 1 and u ∈ TxM .
2. J is completely invariant under f, ie f(J) = J and f−1(J) = J .
3. f is mixing on J (for any open set U such that U ∩ J 6= ∅ there exists an n such that J ⊆ fn(U)).

Recall that a map f : M → N is conformal if gM = λf∗gN where f∗ is the pull-back of f, λ is a positive function
on M and gM and fN are the riemannian metrics on M and N respectively. For the reader unfamiliar with
Riemannian manifolds, when working with Rn this is equivalent to the regular notion of conformality. We are
now in a position to apply the Theorems of the previous section to obtain the following result.

Theorem 4.6. If f is a C1+α conformal mapping with mixing repeller J and s = dimH(J), then dimB(J) =
dimB(J) = s and 0 < Hs(J) <∞. In fact the conditions of Theorem 4.1 and 4.2 hold.

A proof of the above theorem can be found in [21]

4.3 Locally Expanding Maps

In this section we will be working with expanding maps T : X → X, we will see that for a specific class of
these maps it is possible to define local inverses such that the collection of these local inverses forms an iterated
function scheme. The next two definitions are crucial for this idea.

Definition 4.7. Let X be a compact space.

1. A map T : X → X is Ck+α if its kthpartial derivatives exist and satisfy the Hölder condition of exponent
α (see Lemma 1.9). If k = 0 we will abbreviate this to Cα which is the space of α-Hölder continuous
functions.

2. A map is locally expanding there exist constants c > 0 and β > 0 such that ‖(Dxf
n)u‖ ≥ βn‖u‖ for all

x ∈ J , n ≥ 1 and u ∈ TxM .

Definition 4.8. A Markov Partition of T : X → X is a finite collection P = {Pi}ni=0 of closed sets which
satisfy

1. ∪ni=1Pi = X
2. Each Pi is proper (the closure of the interior of Pi is Pi itself).
3. TPi is the union of elements of P.
4. T |Pi

: Pi → T (Pi) is a local homeomorphism.

Markov Partitions are the key to the local inverses mentioned above, the fourth part of the definition implies
that we can define local inverses Ti from T (Pi) → Pi, and the fact T (Pi) is a union of sets in P means that
when we try and form an iterated function scheme by considering sets of the form Ti0 ◦ · · · ◦ Tin(X), it is easy
to check if the maps are well defined.

Example 4.9. Consider the map f : S1 → S1 taking z 7→ z2 (where S1 is viewed as a subset of C). f is a
C1+α locally expanding map:

• S1 is compact
• C1 is obvious and f ′(z) = 2z which is Lipschitz (Hölder continuous with α = 1), so f is C1+1

• fn(z) = z2n, so Dzf
n = 2nz2n−1 and locally expanding is clear.

We may define a Markov Partition by taking P1 = {eiθ : θ ∈ [0, π]} and P2 = {eiθ : θ ∈ [π, 2π]}, with local
inverses given by

T1 : S1 → P 1 , T1 : eiθ 7→ eiθ/2 and T2 : S1 → P2 , T1 : eiθ 7→ eiθ/2+π/2

These are both similarities with contraction factor 1/2. Moreover it is easy to see they form an iterated function
system with invariant set Λ = S1 and satisfying the open set condition with O = S1 \ {1}, hence we can use
Theorem 2.4 to calculate dimH(S1) = s where s is the unique number such that 2(1/2)s = 1, ie. dimH(S1) =
s = 1.
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Figure 12: Example 4.9

The main reason we use C1+α locally expanding maps is because of the following Lemma, a proof of which can
be found in [26].

Lemma 4.10. If T : X → X is a C1+α locally expanding map then there exists a Markov Partition

We may use these Markov Partitions to define the set X in terms of Iterated Function Schemes. Consider
the local inverses of the maps T |Pi : Pi → T (Pi) which we denote by Ti. These maps are contractions since
T ′i (z) ≤ 1/λ implies d(Ti(x), Ti(y)) ≤ (1/λ)d(x, y) hence we can view {T1, . . . , Tn} as an iterated function
scheme. Ideally we want to recover X as the invariant set of the iterated function scheme. In example 4.9 the
iterated function scheme was easy to see since T |Pi

had codomain S1 = P1 ∪ P2 for every i, ∪iTi(S1) = S1 and
in general ⋃

(i0,...,iq)∈Aq

Ti0 ◦ · · · ◦ Tiq (S1) = S1

Where A = {0, 1}. So the invariant set will be exactly Λ. Of course it is not always simple, as the domains and
codomains of our local inverses may not line up as in the next example.

Example 4.11. We can alter example 4.9 by choosing the Markov partition P1 = {eiθ : θ ∈ [0, π/2]}, P2 =
{eiθ : θ ∈ [π/2, π]}, P3 = {eiθ : θ ∈ [π, 3π/2]}, P4 = {eiθ : θ ∈ [3π/2, 2π]}. Now we have that

T (P1) = P1 ∪ P2 , T (P2) = P3 ∪ P4 , T (P3) = P1 ∪ P2 , T (P4) = P3 ∪ P4

giving local inverses

T1 : P1 ∪ P2 → P1 , T2 : P3 ∪ P4 → P2 , T3 : P1 ∪ P2 → P3 , T4 : P3 ∪ P4 → P4

each a similarity with contraction factor 1/2. Now it only makes sense to consider Ti ◦Tj when their codomains
and domains line up, so we get the iterated function scheme associated to the subshift of finite type given by

A =


1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1


This matrix has largest real eigenvalue 2 so appealing to Theorem 2.18 we get that dimH(S1) = 1 again.

So in general given a C1+α locally expanding map T : X → X with Markov partition P = {Pi}ni=1 we will
get an iterated function scheme of local inverses Ti associated to a subshift of finite type given by a matrix A,
where Ai,j = 1 if and only if the domain of Ti is in the codomain of Tj . This will then give us an invariant
set Λ = X. To visualise this more formally, let AA be the subshift of finite type associated the matrix A then
∪i,j∈A2Ti(Uj) = X and more generally ⋃

(i0,...,iq)∈Aq
A

Ti0 ◦ · · · ◦ Tiq−1
(Uiq ) = X

We can then write this in a similar way to that in previous sections by setting

T ((i0, . . . , iq)) = Ti0 ◦ · · · ◦ Tiq−1
(Uq) (4.6)
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4.4 Bowen’s Formula

Throughout this section, T : X → X is a C1+α conformal expanding map, P = {Pi}ki=1 is a Markov Partition
as given by Lemma 4.10 and Ti are the local inverses of T on the elements Pi of P. The following result is due
to Bowen and Ruelle, the proof of the result is long and complex so I will just give a sketch of the main ideas.
A full proof can be found in [27].

Theorem 4.12. Bowen-Ruelle Formula Let T : X → X be a C1+α conformal expanding map then there is a
unique solution to P (−s log |T ′|) = 0 which occurs when s = dimH(X) = dimB(X)

Here P (f) denotes the topological pressure function with respect to T , defined for any continuous f : X → R

P (f) = lim
n→∞

1/n log
∑

x∈Fix(Tn)

exp

(
n−1∑
i=0

f(T i(x))

)

The idea is to use the sets of the Markov Partition P = {Pi}ni=1 as a cover to estimate the Hausdorff dimension,
however since the Pi are closed we first choose open sets Ui ⊃ Pi such that the difference between the Ui and
Pi is very small. Next, using the Hölder continuity and conformality of T we can prove the following bound
where A = {1, . . . , n}.

c1 ≤

∑
(i0,...,iq)∈Aq

|T ((i0, . . . , iq))|t∑
(i0,...,iq)∈Aq

∣∣(Ti0 ◦ · · · ◦ Tiq )′(x)
∣∣t ≤ c2

for all t > 0, all x and some c1, c2, positive constants and using the notation for T from (4.6). This allows us
to translate statements about |T (i0, . . . , i1)| into statements about |(Ti0 ◦ · · · ◦ Tiq )′|.
Next we introduce the Ruelle Operator Lt which acts on Cα, the set of Hölder continuous functions acting on
P as a disjoint union. The Ruelle Operator is defined as

Lt : ω(x) 7→
n∑
i=1

|T ′i (x)|t ω(Ti(x))

Using techniques from functional analysis it can be shown that

• Lt has a maximal positive eigenvalue λt isolated away from the rest of the spectrum of Lt and
• t 7→ λt is analytic
• P (−t log |T ′|) = log λt

Using this final fact we may bound inf{
∑
i |Vi|t : Vi is a δ-cover of X} ≤ Cλnt where n is large enough that

|T (i)| ≤ δ for all i ∈ AF of length greater than n. From here we can conclude that dimH(X) ≤ s where s is
given by Theorem 4.12. To obtain the lower bound, we can use the Ruelle Operator again to give a probability
measure on X and then apply the Mass Distribution Principle.

Remark 4.13. Of great interest is the fact that the map t 7→ λt is analytic, as this implies that the function
t 7→ P (−t log |T ′|) is analytic and so if we have analytic family Tr for r ∈ (−ε, ε) satisfying ∂f/∂r is everywhere
non-zero then by the implicit function theorem the function r 7→ dimH(Λr) is also analytic (where Λr is the
invariant set of Tr).

4.5 Iteration of Holomorphic Maps

A fascinating use of Hausdorff dimension comes from looking at sets points which are ’unpredictable’ under
iteration by holomorphic functions. We will see that for a very small class of these functions, namely the
quadratics, this set is uniquely described up to Hausdorff dimension. We will be working with holomorphic
functions on the riemann sphere Ĉ, the spherical metric on Ĉ will be denoted by d. Recall that a countable
family {fn}∞n=1 of holomorphic functions is normal on a set U ∈ Ĉ if every sequence of functions in that family
has a subsequence which converges uniformly (with respect to d) on compact sets to a continuous function on
U . We will also need the following

Theorem 4.14. Montel’s Theorem A family of holomorphic maps Ĉ → Ĉ is normal on U if and only if it is
locally bounded on U. (Where locally bounded means for given ε > 0 there exists δ > 0 such that d(z, w) < δ
implies d(fn(z), fn(w)) < ε for all n ∈ N and all z, w ∈ U).

A proof of Montel’s theorem can be found in Conway[23]. We say that a family is normal at a point z if there
exists an open neighbourhood U on which the family is normal.
We will be considering holomorphic functions on Ĉ, it is easily proved using techniques in complex analysis that
the set of holomorphic functions on Ĉ is exactly the set of rational functions on Ĉ (See Conway[23] for example)
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Definition 4.15. The Fatou set of a rational function f : Ĉ→ Ĉ is the set

F (f) = {z : {fn(z)}∞n=0 is a normal family}

The Julia set is defined as J(f) = Ĉ \F (f).

Notice that F (f) is open by definition and hence also J(f) is closed. Intuitively we think of the Fatou set as
being the set of points which are fairly ‘stable’ under iteration and the Julia set as the set of points which are
‘chaotic’ or unpredictable under iteration by f.

Definition 4.16. A set E ⊆ Ĉ is completely invariant under f if f(E) = E and f−1(E) = E

Lemma 4.17. J(f) and F (f) are completely invariant under f.

Proof. For readability, I will write F for F (f) and J for J(f) in this proof. Firstly we show that f−1(F ) ⊆ F .
Let z0 ∈ f−1(F ) and write w0 = f(z0) ∈ F . By the definition of F given by Montel’s Theorem we have that
given some ε > 0 there exists a δ > 0 such that

d(w,w0) < δ ⇒ ∀n d(fn(w), fn(w0)) < ε

Now by continuity of f at z0 there exists a δ′ such that

d(z, z0) < δ′ ⇒ d(f(z), f(z0)) = d(f(z), w0) < δ

Combining the above we get that d(fn+1(z), fn+1(z0)) = (fn(f(z)), fn(w0)) < ε, so {fn+1}∞n=1 and hence
{fn}∞n=1 is normal at z0, thus giving f−1(F ) ⊆ F .
For the opposite inclusion let z0 ∈ F (f) and w0 = f(z0). By definition of F, given ε > 0 there exists δ > 0 such
that

d(z, z0) < δ ⇒ ∀n d(fn(z), fn(z0)) < ε

Now, let U = {z : d(z, z0) < δ} and consider f(U) which is an open neighbourhood of w0 (by the Open Mapping
Theorem). Next if w ∈ f(U) then w = f(z) for some z ∈ U so d(fn(w), fn(w0)) = d(fn+1(z), fn+1(z0)) < ε
giving w0 ∈ F and F ⊆ f−1(F ).

Finally since all rational maps on Ĉ are surjective (an easy consequence of the fundamental theorem of algebra),

f(f−1(F )) = f(F ) = F . Since we have shown F is completely invariant, J must be also since F = Ĉ \J .

The next Theorem provides an insight into the behaviour of f on the Julia set, recall that a function f is said to
be mixing if for any two open sets U and V there exists some N such that for all n > N , fn(U) ∩ V 6= ∅.

Lemma 4.18. If f : Ĉ→ Ĉ is a rational map with deg f ≥ 2 then f is mixing on J

While this result is not too hard to prove, it would take us a little bit out of our way. The proof can however
be found in Beardon[24] Theorem 4.2.5.
We are now going to restrict our attention to polynomials of the form fc(z) = z2 + c. This may seem overly
restrictive at first sight but in fact it allows us to consider all quadratics. This is because, in the language of
dynamical systems, every quadratic q(z) is conjugate to fc(z) for some c. What this means is that given any

quadratic q we may choose appropriate values of α, β and c to give a (biholomorphic) map π : Ĉ → Ĉ where
π(z) = αz + β and α 6= 0 with the property that

π−1 ◦ fc ◦ π(z) = αz2 + 2βz +
β2 + c− β

α

(
= q(z)

)
ie. that π ◦ fc = q ◦ π

Ĉ
fc //

π

��

Ĉ
π

��
Ĉ q

// Ĉ

This conjugacy means that F (fc) = π(F (q)), to see this first notice that Ĉ is compact, π and π−1 are continuous

and so π and π−1 are uniformly continuous on Ĉ. Let z0 ∈ F (q), and fix η > 0.

• By uniform continuity of π−1, there exists ε such that d(y1, y2) < ε implies d(π−1(y1), π−1(y2)) < η
• Since z0 ∈ F (q) there is a neighbourhood V on which there exists a δ > 0 such that d(x1, x2) < δ implies
d(qn(x1), qn(x2)) < ε for all n.

• By uniform continuity of π, there exists a δ′ such that d(y1, y2) < δ′ implies d(π(y1), π(y2) < δ.
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Combining the above three, for any y1, y2 ∈ π−1(V ) such that d(y1, y2) < δ′ we have that

d(fnc (y1), fnc (y2)) = d(π−1 ◦ qn ◦ π(y1), π−1 ◦ qn ◦ π(y2)) < η for all n

Hence π−1(z0) ∈ F (fc) and π−1(F (q)) ⊆ F (fc). By reversing the above argument we easily obtain F (q) =
π−1(F (fc).
Since we are now working with polynomials, it is possible to describe the Julia Set in simpler terms. The set
{z : fk(z) 9∞} mentioned below is often called the filled-in Julia set.

Lemma 4.19. If f is a polynomial then J(f) = ∂K where K = {z : fk(z) 9∞}

Proof. If z ∈ δK then in any open neighbourhood about z there are points w1 ∈ K and w2 /∈ K such that
fn(w1)→∞ as n→∞ and fn(w2) 9∞ as n→∞. Hence there is no open neighbourhood about z on which
any subsequence of {fn}∞n=1 is uniformly convergent and z ∈ J(f). Conversely if z /∈ δK then either z ∈ K◦ or

z ∈ Ĉ \K. If z ∈ K◦ then there is an open neighbourhood U on which {fn}∞n=1 is locally bounded and hence

by Montel’s Theorem {fn}∞n=1 is normal at z and z /∈ J(f). If z ∈ Ĉ \K, then there is an open set U on which
fk(x) → ∞ for all x ∈ U , note that this is not quite strong enough, we need that fn converges uniformly on
compact sets in U.
Claim: There exists an r such that |fk(z)| ≥ r for some k implies that |fk+l(z)| ≥ 2lr. If we assume the
claim then since fn(z) → ∞ there exists a k such that |fk(z)| ≥ r so by continuity of fk there is an open
neighbourhood V of z such that |fk(x)| ≥ r for all x ∈ V and the claim gives that fk converges uniformly to ∞
on V which completes the proof.
Proof of Claim: Write f(z) =

∑n
i=0 aiz

i with an 6= 0, then we may choose r sufficiently large that

|z| ≥ r ⇒ |an||z|
n

2
≥ 2|z| and

|an||z|n

2
≥
n−1∑
i=0

|ai||z|i

So |z| ≥ r then implies that

|f(z)| ≥ |an||z|n −
n−1∑
i=0

|ai||z|i ≥
|an||z|n

2
≥ 2|z|

Finally, applying this inductively with the initial condition that |fk(r)| ≥ z we get that |fk+l(z)| ≥ 2k|z| ≥
2kr.

This next Lemma gives us an intriguing third alternative definition of the Julia set and is essential for the proof
of the main Theorem of this section.

Lemma 4.20. If ω is an attractive fixed point of a polynomial f , then ∂A(ω) = J(f), where A(ω) is the basin
of attraction of ω defined as A(ω) = {z : fk(z)→ ω as k →∞}.

Proof. If z ∈ ∂A(ω) but z /∈ J(f) then there is an open neighbourhood U about z on which {fn}∞n=1 is normal.
U ∩A 6= ∅ so {fn} converges to the constant function ω on U ∩A and hence converges to the constant function
ω on U by the Identity Theorem (see Conway[23]). Hence U ⊆ A(ω) which is a contradiction.
For the converse, let z ∈ J(f), so fk(z) ∈ J(f) (follows immediately from Lemma 4.19). Now, if fk(z) → ω

then ω ∈ J(f) since J(f) is closed, but A(ω) is an open set about ω so by Lemma 4.19 intersects Ĉ \K =
{z : fk(z)→∞} which is a contradiction. Hence z /∈ A(ω). However, if U is a neighbourhood of z then since
f is mixing (Lemma 4.18) there exists a k such that fk(U) ∩A(ω) 6= ∅. So points arbitrarily close to z iterate
to ω and so z ∈ A(ω) and hence z ∈ ∂ω.

Notice that when c is zero, 0 is an attractive fixed point and J(fc) is the unit circle, since f0(z)→ 0 if |z| < 1
and f0(z)→∞ if |z| > 1. When c moves away from zero but is still small, then ω = 1/2(1−

√
1− 4c) is a fixed

point and we would intuitively expect J(fc) to distort away from a circle, as the next theorem shows, this is
exactly what happens. See figure 13 for a graphical demonstration of this.

Theorem 4.21. If |c| < 1/4 then J(fc) is a simple closed curve.

Proof. Let C0 be the curve |z| = 1/2, notice that this surrounds the attractive fixed point ω of fc. Next,
consider the loop C1 = f−1

c (C0) and notice it surrounds C0 since the branches of the inverse of fc are ±
√
z − c

and when z = 1/2,
√
|z − c| > 1/2. Now denote the annulus between C0 and C1 by A1 and for each θ ∈ [0, 2π)

associate a curve γθ which leaves C1 perpendicularly at (1/2)eiθ and hits C1 perpendicularly at some point
which we denote by ψ1(θ). Furthermore we choose these curves so that ψ(θ) is surjective onto C1. Now define
C2 as C2 = f−1

c (C1), this is again a curve containing C1 and we denote the annulus between C2 and C1 by
A2. We can also extend γθ by adjoining to it the curve f−1

c (γθ) and denoting the point where it touches C2
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Figure 13: Julia sets J(fc) where fc(z) = z2 + c for the values c = 0, c = 0.15 + 0.15i, and c = −0.4 + 0.4i.
Notice the larger the value of |c| the rougher the boundary of J(fc) becomes. These figures are easily plotted
by either computing {z : fn(z) → ∞} and taking the boundary or finding one value z ∈ J(fc) and using the

fact that J(fc) = ∪∞k=1f
−k(z) for any z ∈ J(fc) (this is easily provable see for example Falconer [1] Corollary

14.8

by ψ2(θ). This process can now be continued inductively to get a sequence An of annuli between loops Cn and
curves γθ which touch Cn at ψn(θ).
Now, as n → ∞, the curves Cn will approach ∂A(ω), and by Lemma 4.20 this is exactly J(fc). Finally, when
z is outside of C1, |f ′c(z)| = 2|z| > α > 1 for some α. It follows that |(f−1

c )′(z)| < 1/α < 1 for z outside of C1

and so the length of γθ between Cn and Cn+1 is strictly less that 1/α times the length of γθ between Cn−1 and
Cn. So the length of γθ between Cn and Cn+1 is decreasing (more than) geometrically to 0 as n → ∞. Since
this α was not dependant on θ we can conclude that the ψn(θ) converge uniformly to a continuous function
ψ(θ) : S1 → J(fc).
It remains to show that J(fc) is a simple curve. Suppose ψ(θ1) = ψ(θ2) for some θ1 < θ2 and let D be the
region bounded by C0 between θ1 and θ2 and the two curves γθ1 and γθ2 , now since C0 doesn’t ‘escape’ from
the interior of J(fc) under iteration and neither does γθ, ∂D is bounded under iteration by fc. Hence by the
Maximum Modulus Theorem (see for example Conway[23]) D remains bounded under iteration by fc. Thus
D ⊂ {z : fk(z) 9∞ as k →∞} and by Lemma 4.19 D◦ ∩ J = ∅ which in turn implies that ψ(θ) = ψ(θ1) =
ψ(θ2) for all θ ∈ (θ1, θ2).

In fact, when |c| < 1/4 J(fc) is what we call a quasi-circle, which we will discuss in detail in the next section.

4.6 Classification of Quasi-Circles

Quasi-Circles are a particular class of curves which are homeomorphic to S1 but also satisfy properties very
similar to the quasi-self-similarity properties of Theorem 4.1 and 4.2. From these properties we can deduce the
very strong result that any two quasi-circles C1 and C2 are Lipschitz equivalent (there exists Lipschitz mappings
C1 → C2 and C2 → C1) if and only if the Hausdorff dimensions of C1 and C2 coincide, we can also relate this
information back to our results about the Julia set of quadratics from the previous section.

Definition 4.22. C is a quasi-self-similar circle or quasi-circle if

1. C is homeomorphic to S1

2. There exists r0, a, b > 0 such that for every N with |N | = r < r0 there is a mapping ε : N ∩ C → C such
that

ad(x, y) ≤ rd(ε(x), ε(y)) ≤ bd(x, y) for all x, y ∈ N

3. There exists r1, c > 0 such that for any ball whose center lies in C and has radius r < r1 there is a mapping
ψ : C → B ∩ C satisfying

crd(x, y) ≤ d(ψ(x), ψ(y))

Notice that the second property incorporates condition (4.1) from Theorem 4.1 and the third condition is exactly
(4.3) from Theorem 4.2. This immediately gives us that the Hausdorff and Box dimensions of a quasi-circle
coincide and that if s = dimH(C) then Hs(C) <∞.

Lemma 4.23. 1. Hs(C) ∈ (0,∞)
2. Hs(I(x, y)) > 0 for all x 6= y
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3. For all x, Hs(I(x, y))→ 0 as y → x

Proof. 1. This is exactly the remark preceeding this Lemma.
2. Notice that the third property of a quasi-circle implies that the map ψ is both continuous and injective.

Given a ball B with radius r < r0, choose an open cover {Vi}ni=1 of B ∩ C such that
∑∞
i=1 |Vi|s ≤

Hs(B ∩ C) + ε. Now {ψ−1(Vi)}ni=1 forms an open cover of C and

Hs(C) ≤
n∑
i=1

|ψ−1(Vi)| ≤
1

csrs

n∑
i=1

|Vi| ≤
1

csrs
Hs(C ∩B) + ε

As ε was arbitrary, this gives that Hs(B ∩ C) ≥ csrsHs(C) > 0 which in turn gives the result.
3. Starting from the second condition and using the exact same technique as above we obtain
asHs(N ∩ C) ≤ rsH(C) which gives the result.

Example 4.24. If fc = z2 + c for |c| < 1/4 then J(fc) is a quasi-circle. This follows since fc is a mixing
repeller on J (see Definition 4.5 and Lemmas 4.18 and 4.17), it is C1+α for α = 1 (See Definition 4.4) and
conformal since it is holomorphic and its derivative is everywhere non-zero on J(fc). Hence by Theorem 4.6
it satisfies conditions 2 and 3 of the Definition of a quasi-circle. By Theorem 4.21 it also satisfies the first
condition.
We can also apply Remark 4.13 to deduce that the Hausdorff Dimension of J(fc) is analytic in c. Ruelle

also calculated explicitly dimH(J(fc)) = 1 + |c|2
4 log 2 + o(|c|3) using Bowen’s Formula (4.12) in [28]. This is an

interesting result, recall before that for the iterated function systems of section 3, where we fixed a set of affine
contractions Ti and varied the translations ai, the Hausdorff dimension was not even continuous as a function
of the ai.

Lemma 4.25. If C is a quasi-circle then there exist constants c1, c2 such that the following holds

0 < c1 ≤
Hs(I(x, y))

|x− y|s
≤ c2

For a proof of this Lemma see [22], its not included here as it doesn’t provide any real insight into the area, it
simply follows from direct calculations of Hs(I(x, y)). However from this connection between Hs(I(x, y)) and
the distance between x and y it is possible to prove the following very powerful statement.

Lemma 4.26. Let C be a quasi-circle with s = dimH C then there exists a bijection f : C → S1 satisfying

α|x− y|s ≤ θ(f(x), f(y)) ≤ β|x− y|s

for some constants α, β and where θ(x, y) is the smallest angle between x and y on S1

Proof. Let m = Hs(C) and recall that by Lemma 4.23 we have that 0 < m < ∞. Choose a point p ∈ C and
define f : C → S1 by

f(x) = (2π/m)Hs(I(p, x))

Notice that f is strictly monotonic, since x < y implies I(p, x) ⊂ I(p, y) which implies Hs(I(p, x)) ≤ Hs(I(p, y))
and f is continuous by Lemma 4.25. Furthermore f(0) = 0 by continuity, Hs(I(x, y)) → 0 as y → x (Lemma
4.23) and f(2π) = 2π. Combining the previous three facts, we see that f is bijective.
Since C is compact (homeomorphic image of a compact space) I is uniformly continuous. Hence there exists
ε > 0 such that |x− y| < ε implies |I(x, y)| < r0 and θ(f(x), f(y)) < 1/2 (this final condition is just asking that
we take the smallest angle between f(x) and f(y)). Now by Lemma 4.25 we know

0 < c1 ≤
Hs(I(x, y))

|x− y|s
≤ c1

for some constants c1, c2. Using θ(f(x), f(y)) = (2π/m)Hs(I(x, y)) We can rewrite this as

0 < c1 ≤
m

2π

θ(f(x), f(y))

|x− y|s
≤ c2

This gives the result.

We are now ready to prove our main theorem, due to Falconer and Marsh in [22]

Theorem 4.27. Quasi-circles C1 and C2 are Lipschitz equivalent if and only if dimH(C1) = dimH(C2)

Proof. Recalling from Lemma 1.10 that bi-Lipschitz mappings preserve Hausdorff dimension its clear C1 and
C2 being Lipschitz-equivalent implies that dimH(C1) = dimH(C2) For the opposite inclusion, if dimH(C1) =
dimH(C2) then by Lemma 4.26 we get bijections f1 : C1 → S1 and f2 : C2 → S1 which satisfy the holder
condition of exponent α. Hence f2 ◦ f−1

1 : C1 → C2 is a bi-Lipschitz bijection.
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5 Remarks about the Figures

The pictures of self-affine fractals were plotted using the following observations

1. given an iterated function system {S1, . . . , Sm} with invariant (or sub-self-similar) set Λ, the function
S : K → Λ could have been defined as

S(i) =

∞⋂
r=0

Si0 ◦ · · · ◦ Sir (z)

for any point z ∈ Rn.
2. Since we are always dealing with contractions, it is sufficient to only calculate Si0◦· · ·◦Sir (z) for sufficiently

large r, in order to get close to Λ.

These observations can be exploited to easily plot very good approximations of the invariant sets. Take any
point z ∈ Rn (in practice you want it to be fairly close to Λ) then apply the transformations Si chosen at
random enough times to be very close to Λ and plot that point. After repeating the above enough times you
build up a very good image of Λ. I wrote a very small C program using the above techniques, which I can
provide to anyone interested.
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